Section 3: REFERENCE DYNAMIC MODELS

3.1. Response of a dynamic model

A thermometer has first-order dynamics with a time constant of 1 second, steady-state gain of 1. It is placed in a temperature bath at $120^{\circ}F$ (T_{ext}). After the thermometer reaches steady state ($T_{ext}=T_m=120^{\circ}F$), it is suddenly placed in a bath at $140^{\circ}F$ for $0 \le t \le 10$ s. Then T_{ext} is returned to the bath at $100^{\circ}F$.

$$T_{ext}(t) = 120 + 20 u(t) - 40 u(t - 10)$$

Where u(t) is the Heaviside step function.

- 1. Write the forcing function $T_{ext}(t)$ in terms of deviation variable(s) $T'_{ext}(t)$.
- 2. Write the forcing function $T'_{ext}(t)$ in the Laplace domain $(\hat{T}_{ext}(s))$.
- 3. Obtain the expression, in the Laplace domain, of the measured temperature $\hat{T}_m(s)$.
- 4. Obtain the expression of the time evolution of the measured temperature in terms of deviation variable $T'_m(t)$
- 5. Calculate the measured temperature at:

a.
$$t=0.5 s$$
;

b. t=10.5 s;

c. t=15 s.

X	exp(-x)
0	1.00
0.25	0.78
0.5	0.60
0.75	0.47
1	0.37
1.5	0.22
2	0.14
2.5	0.08
3	0.05
3.5	0.03
4	0.02
≥ 4.5	0

Hints:

- The $\mathcal{L}^{-1}\{e^{-t_d s}f(s)\}=u(t-t_d)f(t-t_d)$ where u(t) is the Heaviside step function.
- The provided table can be used to approximate the exponential decay function:

Solution

The steady state temperature is: $T_{ext_{ss}} = T_{m_{ss}} = 120^{\circ}F$

1. The deviation variable of the forcing function $T_{ext}(t)$ is:

$$T'_{ext}(t) = T_{ext}(t) - T_{ext_{SS}}$$

$$T'_{ext}(t) = (120 + 20 u(t) - 40 u(t - 10)) - 120$$

$$T'_{ext}(t) = 20 u(t) - 40 u(t - 10)$$

2. The Laplace transform of $T'_{ext}(t)$ is:

$$\mathcal{L}\{T'_{ext}(t)\} = \hat{T}_{ext}(s) = 20\mathcal{L}\{u(t)\} - 40\mathcal{L}\{u(t-10)\}$$
$$\hat{T}_{ext}(s) = \frac{20}{s} - \frac{40}{s} \exp(-10s)$$

3. At this point the definition of transfer function has to be used. A "first-order dynamics with a time constant of 1 second, steady-state gain of 1" has the form:

$$G(s) = \frac{\hat{T}_m(s)}{\hat{T}_{ext}(s)} = \frac{1}{s+1}$$

Therefore:

$$\hat{T}_m(s) = G(s) \, \hat{T}_{ext}(s)$$

$$\hat{T}_m(s) = \frac{1}{s+1} \frac{20}{s} - \frac{1}{s+1} \frac{40}{s} \exp(-10s)$$

4. To obtain the $T'_m(t)$ the inverse Laplace transform has to be performed on $\hat{T}_m(s)$.

$$\mathcal{L}^{-1}\{\widehat{T}_m(s)\} = \mathcal{L}^{-1}\left\{\frac{20}{s(s+1)}\right\} - \mathcal{L}^{-1}\left\{\frac{40}{s(s+1)}\exp\left(-10s\right)\right\}$$

From the "Table of Laplace Transforms" in the Reference Tables for Students 1:

$$\frac{\alpha}{s(s+\alpha)} \qquad 1-\exp(-\alpha t)$$

$$\mathcal{L}^{-1}\left\{\frac{20}{s(s+1)}\right\} = 20(1-\exp(-t))$$

$$\mathcal{L}^{-1}\left\{\frac{40}{s(s+1)}\exp(-10s)\right\} = \cdots$$

$$\mathcal{L}^{-1}\left\{e^{-t_d s}F(s)\right\} = u(t-t_d)f(t-t_d)$$

¹ The same result can be obtained with the partial fraction decomposition.

$$\mathcal{L}^{-1}\left\{\frac{40}{s(s+1)}\exp(-10s)\right\} = 40(u(t-10)f(t-10))$$

Who is f(t)?

$$f(t) = \mathcal{L}^{-1} \left\{ \frac{1}{s(s+1)} \right\} = (1 - \exp(-t))$$

To obtain f(t - 10) we have to "substitute" "t" with "t - 10":

$$f(t-10) = 1 - \exp(-(t-10)) = 1 - \exp(-t+10)$$

Therefore:

$$\mathcal{L}^{-1}\left\{\frac{40}{s(s+1)}\exp{(-10s)}\right\} = 40\left(u(t-10)(1-\exp{(10-t)})\right)$$

The inverse Laplace transform of $\hat{T}_m(s)$ is:

$$\mathcal{L}^{-1}\{\hat{T}_m(s)\} = T_m'(t) = 20(1 - \exp(-t)) - 40u(t - 10)(1 - \exp(10 - t))$$

5. The measured variable is: $T_m(t) = 120 + T'_m(t)$

a.
$$t=0.5 \text{ s}$$

$$T_m(0.5) = 120 + 20(1 - \exp(-0.5)) - 40 u(0.5 - 10)(1 - \exp(10 - 0.5))$$

The Heaviside step function is defined as:

$$u(x) = \begin{cases} 0, x \le 0 \\ 1, x > 0 \end{cases}$$

Therefore:

$$T_m(0.5) = 120 + 20(1 - \exp(-0.5)) \sim from \ table = 120 + 20(1 - 0.6) = 128 \, ^{\circ}F$$

b. t=10.5 s

$$T_m(10.5) = 120 + 20(1 - \exp(-10.5)) - 40 u(10.5 - 10)(1 - \exp(10 - 10.5)) =$$

= 120 + 20(1 - exp(-10.5)) - 40 u(0.5)(1 - exp(-0.5)) ~ from table =
= 120 + 20(1 - 0) - 40 × 1 × (1 - 0.6) = 124°F

b.
$$t=15 \text{ s}$$

$$T_m(15) = 120 + 20(1 - \exp(-15)) - 40 u(15 - 10)(1 - \exp(10 - 15)) \sim from \ table$$

= $120 + 20 - 40 = 100^{\circ}F$