Surname	Name	Student code	
Section 1. TRUE/	FALSE QUIZZES		
1. The Coriolis effect i	s associated with the positive	displacement meter	
True		false	
2. 3. The pyrometer	er measures the temperature b	y means of a radiation measurement	
True		false 📃	
Section 2. MULTI	PLE ANSWER QUIZZE	ES	

1. This property of the sensors depends on the full scale

NB: only mark the wrong answer!

- a. 🗌 accuracy
- b. D precision
- c. 🗌 rangeability
- d. 🗌 measuring range
- 2. The principle on which is based the thermocouple is
- a. Deltier effect
- b. D Fourier effect
- c. Soret effect
- d.
 Seebeck effect

Section 3: SENSORS AND MEASURING INSTRUMENTS PROCESS

3.1 The capacitive pressure sensor

a. Provide a schematic drawing of how it works

3.2 The orifice plate for flow measurement

a. Provide a schematic drawing of how it works

3.3 The radioisotope-emission level sensor

a. Provide a schematic drawing of how it works

3.4 The rotameter

With ref. to the Fig.:

a. Classify this one according to the 1st classification of flow sensors

- b. Classify this one according to the 2^{nd} classification of flow sensors
- c. Can it work for liquids?
- d. Can it work horizontally?
- e. Derive mathematically the fundamental flow equation according to its working principle

Section 4: VALVES

4.1 The intrinsic characteristic law

Starting from the original formula of the **exponential intrinsic characteristic**:

 $\Phi = \Phi_0 e^{\beta h}$

derive mathematically the corrisponding equation based on *rangeability*:

 $\Phi = r^{h-1}$

4.2 Valve technology

For the valve in figure:

- a. recognize its **type**
- b. What is its **function**?
- c. Is this valve a **linear o rotary** one?
- d. Is this valve a **bi-directional** one?
- e. Recognize and shortly describe the **component parts** denoted by a number in the figure

4.3. Valve sizing problem

A valve is to be sized for the following conditions:

1. Calculate the **flow coefficient** C_v for the valve

A Pratt **modulating ball valve** is available with the following C_{vn} table:

Valve Size,	Cvn
in	gpm psi ^{-1/2}
6	5250
8	9330
10	14600
12	21000

and the **intrinsic characteristic** diagram in the Figure, with θ expressed in degree (°).

Therefore:

- 2. Choose the valve with the most suitable DN among those in the table.
- 3. Suggest what the rangeability might be for the chosen valve.
- 4. Calculate the salient points of the **flow characteristic**, report them on a graph and determine if the valve operates in **normal flow** rate.

Next,

for the valve inserted in a circuit being $\Delta P_n = 4$ psi and considering $\Delta P_u=12$ psi as **utility pressure drop**:

- 5. Calculate the **Authority V**
- 6. Calculate flow rate \dot{V}_n passing through the valve inserted in the circuit (nominal condition)

- 7. How much is the flow rate $\dot{V}_1(\theta_1)$ passing through the value when $\theta_1 = 35^\circ$?
- 8. How much is the actual pressure drop ΔP_{v1} across the valve for $\theta_1 = 35^\circ$?
- 9. Calculate the opening angle θ_2 which allows a flow rate $V_2(\theta_2) = 1532$ gal (US)/min

Next,

you have to face the **verification problem** for the previously sized valve:

10. In nominal conditions and assuming ΔP as used for the initial valve sizing, is the chosen valve

able to allow a flow of jojoba oil (ρ =865 kg/m³) equal to V _v=10000 gpm ?

11. Again in nominal conditions and assuming ΔP as used for valve sizing, what is the max flow rate of jojoba oil that the chosen valve is able to allow?