Lastname Name Student code

\mathbf{c}_{\wedge}	<u>04</u>	OB	. 1		
JE	Gu	OH	l I.	C.	UIZ

1.

2.

3.

4.

1.	The rotameter is one of the Differential Pressure Flowmeters	
	true □	false □
2.	The membrane valve got this name just because has a ceramic	membrane in contact with the
	flowing fluid	
	true □	false □
3.	The Coriolis Flowmeter is a transducer of volumetric flowrate	
4.	true □ The sonar level sensors always provide the contemporary measure □	false □ urement of the temperature false □
	Closed liquid column manometers (closed "U" tube manometer	rs) containing mercury are used
	for measuring pressure in a vacuum true □	false □
Se	ection 2. MULTIPLE CHOICE QUESTIONS	
a. b. c.	When the percentage of flow through a valve equals the percental has ☐ Linear flow characteristic ☐ Equal percentage flow characteristic ☐ Quick opening flow characteristic ☐ Curved flow characteristic	
b.	Which of the following parts of a globe valve serves the same puvalve? ☐ Seat ☐ Plug ☐ Packing rings ☐ Packing flange	irpose as the disk in a butterily
b.	- · · · · ·	absolute psi?
a.b.c.d.	Globe	style is

5.		A r	nagnetic flow meter determines the flow by measuring the following property of the fluid:
	a.		velocity
	b.		density
	c.		temperature
	d.		volume

Section 3: SENSORS AND INSTRUMENTATION EQUIPMENT FOR PROCESS MEASUREMENTS

3.1. Temperature measurement with termocouple

A thermocouple of type N is used to measure the temperature of a fluid in a tank. When the reading of the voltmeter is 8.99 mV and the cold junction is at a temperature of 283.16 K, determine the temperature of the fluid with the approximation $\pm 1~\rm K = \pm 1~\rm ^{\circ}C$

- a. 150 °C
- b. 300°C
- c. 352 K
- d. 363 K

3.2. The inductive pressure transducer

- a) Recognize the most important parts and match them directly on the image
- b) Is it measuring the **absolute pressure**, relative or differential?
- c) Directly on the image, indicate exactly where the fluid actually is for pressure measurement

3.3. The "sonar" level meter

a. Provide a schematic drawing of how it works

3.4. Accuracy and precision

- a) Discuss briefly the difference between accuracy and precision
- b) Using a graph, try to show how **accuracy** and **precision** affect measurements, for example as a function of time

3.5. Positive-displacement flow meter

a. Please provide an explanation how it works (in 3 text lines)

3.6. The rotary vane flow meter

a. Provide a schematic drawing of how it works

Section 4: Valves

4.1. Diaphragm valve with pneumatic actuator

Draw a simple sketch representing the pneumatic servomotor membrane mounted on a globe valve in both of the following cases:

- a) "direct action"
- b) "reverse action"

4.2. Problem

A globe valve is to be sized that can work for flow control of the following fluid:

liquid: hexane density $\rho = 654.8 \text{ kg/m}^3$;

under the following additional conditions:

nominal diameter of the line: DN = 4 in

pressure upstream of the valve: $P_1=32.5 \text{ psi}$ pressure downstream of the valve: $P_2=27.5 \text{ psi}$ nominal flow rate: $\dot{V}=10 \text{ L/s}$ vapor pressure: $\dot{V}=0.29 \text{ psi}$

ratio coefficient of the critical pressure for liquids: $F_F = 0.956$

1. Calculate the flow coefficient C_v

A **Riggs** globe valve is available with the following manufacturer's table:

	Valve Opening Percent of Total Travel (h, %)									
	10	20	30	40	50	60	70	80	90	100
DN inches	C _v [gpm psi⁻0.5]									
1"	0.79	1.25	1.80	2.53	3.63	5.28	7.59	10.7	12.7	13.2
1.5"	0.80	1.23	1.91	2.95	4.30	6.46	9.84	16.4	22.2	28.1
2"	1.65	2.61	4.30	6.62	11.1	20.7	32.8	44.7	50	53.8
3"	3.11	5.77	9.12	13.7	21.7	36	60.4	86.4	104	114
4"	4.90	8.19	13.5	20.1	31.2	52.6	96.7	140	170	190

- 2. Draw the intrinsic characteristic and suggest which type it appears to be
- 3. Size the valve, choosing the one with the right DN
- 4. Calculate the relevant points characterizing the **flow characteristic**, put them in a graph and determine if the valve operates under **normal flow** conditions
- 5. Calculate the "theoretical" value of the **recovery coefficient** which would determine cavitation in the chosen valve

Next, you are prompted to enter the sized valve in a circuit, taking ΔP_n equal to the original value (P_1 - P_2) and considering an user's equipment pressure drop:

$$\Delta P_u = 2\Delta P_n$$

- 6. How much is the V authority?
- 7. Discuss if the calculated value for the authority V is consistent or not with the inherent characteristic under the point 2)
- 8. Calculate the value of the nominal flow \dot{V}_{n} that passes through the valve in the circuit
- 9. How much is the flow rate $V_1(h)$ which passes the valve for $h_1 = 0.4$?
- 10. How much is the actual pressure drop across the valve ΔP_{v1} for $h_1 = 0.4$?
- 11. How much will the relative stroke h_2 be for which a flow rate $V_2(h) = 28.5$ gpm will transit into the valve inserted in the circuit?