Lastname		Name	Student code		
S	Section 1. QUIZ				
1.	Immersion level measurement true	can also be done for solids	false □		
2.	The primary sensitive elemen pneumatic signal	nt never transforms the meas	ured variable into an electrical or		
	true		false □		
3.	In the gate valves the shutter al true	ways moves parallel to the sea	ling seats false □		
4.	The Seebeck effect generates a true □	a f.e.m. which is a linear function	on of temperature false □		

Section 2. MULTIPLE CHOICE QUESTIONS

- 1. A magnetic flow meter determines the flow by measuring the following property of the fluid:
- a. 🛛 velocity
- b.
 density
- c. 🛛 Temperature
- d. 🛛 Volume
- 2. Which meter does not introduce an obstruction?
- a. \Box Head meter
- b. \square Magnetic flowmeter
- c. Time-of-travel ultrasonic meter
- d. \Box Turbine meter
- 3. Which of the following parts of a **globe valve** serves the same purpose as the disk in a butterfly valve?
- a. 🛛 Seat
- b. 🛛 Plug
- c. **D** Packing rings
- d. **D** Packing flange
- 4. What is roughly a gauge pressure of 195 psi when converted in absolute psi?
- a. 🛛 151
- b. 🛛 164
- c. 🛛 178
- d. 🛛 210

Section 3: SENSORS AND INSTRUMENTATION FOR PROCESS MEASUREMENTS

3.1. The thermocouple

- a. make a schematic drawing of an industrial thermocouple
- b. appropriately highlight the hot junction and the connection terminals in such a schematic drawing

3.2. Pressure sensors

Make a schematic drawing of the Bourdon tube

3.3 Throttle flow meters

- a) Obtain the flow rate equation in the **ideal case**
- b) Calculate the flow rate measured for water with the following data: $P_1=90$ kPa, $P_2=60$ kPa, $d_1=55$ mm, $d_2=25$ mm
- c) Extend the flow rate equation to **non-ideal cases**
- d) Extend the flow rate equation to the case of **non-constant density**

3.4. "Sonar" level meter

Make a schematic drawing

3.5. General properties of sensors

Draws and comments on the block diagram which includes the essential elements for the measurement and therefore allows the schematization of the **"measurement chain"**

3.6. Accuracy and precision

Draw a graph of a measurement over time showing the difference between **accuracy and precision** for a sensor, and discuss its meaning <u>shortly</u>

Section 4: VALVES

4.1 The control valves

Prove how mathematically from the Eq. of the intrinsic equal percentage characteristic

 $\Phi = \Phi_0 e^{\beta h}$

the corresponding expression is obtained for a control valve with rangeability *r*:

 $\Phi = r^{h-1}$

4.2. Sizing problem

The sizing of a valve is required under the following conditions:

1. Calculate the valve flow coefficient C_v

A **diaphragm valve** type "**Saunders**" is available with:

- > a single intrinsic linear characteristic with rangeability r=20
- recovery coefficient F_L=0.7
- \succ the following C_{vn} table:

DN	C _{vn}	
(in)	[gpm psi ^{-0.5}]	
1/2 "	9	
1″	38	
1 ½"	75	
2″	128	

- 2. Make a **schematic drawing** of this valve
- 3. Choose the most appropriate **DN**
- 4. Calculate the relevant points characterizing the **flow characteristic**, put them in a graph and determine if the valve operates under **normal flow** conditions

Subsequently, you must insert this valve in a circuit whose user pressure drop is:

a.
$$\Delta P_u = \Delta P_n/2$$

b. $\Delta P_u = 2\Delta P_n$

assuming that $\Delta P_n = P_1 - P_2$ from the data previously used for sizing.

5. How much is the authority V value in the two cases a) and b)?

Moreover, in condition a) in which: $\Delta P_u = \Delta P_n/2$

- 6. What is the volumetric flow rate V_h that will pass through the valve being h = 0.25?
- 7. What is the pressure drop ΔP_{v_h} through the value inserted in the circuit being h = 0.25?
- 8. How much will the relative stroke h_r be for which a flow rate $V_r = 340 \text{ gal}(\text{US})/\text{min will transit}$ into the valve inserted in the circuit?
- 9. Can you let gasoline ($\rho = 740 \text{ kg m}^{-3}$) pass through the same valve, under the above flow and pressure conditions? What is going to change? How much will the new C_v value be?