Student's code **Last Name** Name **Section 1. TRUE/FALSE QUESTIONS** 1. The sensor **span** is the amplitude of the measuring range: true false □ 2. The **membrane** valve got this name just because has a **ceramic membrane** in contact with the flowing fluid true false □ 3. In a "air-to-open" valve the air operates on the actuator in order to move away the closure member from the seat true false □ 4. The **Bourdon pressure gauge** is based on the balance force principle true false □ Section 2. MULTIPLE CHOICE QUESTIONS 1. Which one of the following working principles is **not** used to measure **flow rate**? electrical resistance variation b. □ ultrasound c. \square heat conductivity d.

magnetic field 2. The **Coriolis effect** is associated with the: a.

Level meter b. □ Mass flowmeter c. 🗆 Volumetric flowmeter d.

Pressure meter 3. When the percentage variation of flow through a valve equals the percentage variation of plug movement, a valve has a a.

Linear flow characteristic b.

Equal percentage flow characteristic c.

Ouick opening flow characteristic d.

Parabolic flow characteristic 4. Which of the following types of valve actuators responds to a **pneumatic signal?** A. Solenoid B. Motor C. Diaphragm D. Electromagnetic valve

Section 3: SENSORS AND INSTRUMENTATION FOR PROCESS MEASURING

3.1. Temperature measurement with thermocouple

A **J-type thermocouple** is used to measure the temperature of superheated steam.

The **cold junction** of the measuring circuit is at a temperature $T_{\rm gf} = 291$ K, that is different from the reference temperature of 0° C.

The voltmeter connected to the cold junction provides a measure of the electromotive force V = 23.32 mV.

a. determine the temperature of steam T_{gc} in ${}^{\circ}C$ with an accuracy $\pm~1{}^{\circ}C$

3.2. Inductive Pressure Transducer

- a) Recognize the constituent parts and indicate them just with ref. to the drawing.
- b) Where is exactly the fluid the pressure of which has to be measured?

3.3. Radioisotope Level Sensor

a. Draw a **simple scheme** showing its working principle

3.4 Sensors' properties

a) Draw <u>a suitable diagram</u> just to show the difference between accuracy and precision for a process variable that is measured during time

b) Provide the definition and one example of static characteristic.

3.5. The rotameter

a. Draw a **simple scheme** useful for its working principle

- b. Derive the equation of the flow rate in the ideal case
- c. Extend the equation of the flow rate to the case of non-constant density
- d. Prepare a summary table about rotameter, reporting in columns **advantages**, **disadvantages**, **other features** deemed interesting.

(Note: A short and well-articulated discussion will be evaluated more than a long and confused text!)

Pag. 5 of 7

.

Section 4: VALVES

4.1. Divert Valve

a. What is it? Please answer with the aid of a schematic drawing

4.2. Pneumatic membrane servomotor

a. **Briefly** explain working principle and operation, with the aid of a schematic drawing

4.3. Valve sizing problem

It is required the sizing of a **globe valve** for the following conditions:

nominal diameter of the line: DN = 65 mm fluid: olive oil, with a density $\rho = 920$ kg/m³ upstream pressure of the valve: $P_1 = 4.5$ atm

downstream pressure of the circuit in which the valve is inserted: $P_3 = 1.6$ atm

downstream pressure of the valve P_2 as given from the formula $\Delta P = (P_1 - P_2) = 45\%(P_1 - P_3)$

nominal flow rate in the range: $\dot{V} = 4.5 \div 6.5 \text{ L/s}$

vapor pressure: $P_v = 0.003$ atm

liquid critical pressure ratio factor: $F_F = 0.956$

1. Calculate the **flow coefficient C**_v for the above conditions

The manufacturer provided the following Table for a Burkert 2013 valve, which is available as:

a VA1 valve with equal percentage intrinsic characteristic,

a VA2 valve with **linear** intrinsic characteristic

and a VA3 valve with quadratic intrinsic characteristic.

The *rangeability* is always r = 30.

DN (mm)	$K_{vn} (m^3(H_2O) / h bar^{1/2})$
10	2.7
15	4.0
20	7.1
25	12.0
32	18.0
40	34.0
50	48.0
65	64.0

Cvn=1.16 Kvn

2. **Size the valve** for the problem, choosing the one with the most appropriate DN and intrinsic characteristic.

Next, you are prompted to enter the sized valve in a circuit, taking ΔP_n equal to the original value (P_1 - P_2) and considering an user's equipment pressure drop:

$$\Delta P_0 = 2.9$$
 atm

- 3. How much is the V authority?
- 4. Discuss if the calculated value for the authority V is consistent or not with the inherent characteristic previously chosen under the point 2)
- 5. Calculate \dot{V}_n
- 6. How much is the flow rate $\dot{V}_1(h)$ which passes the valve for $h_1 = 0.4$?
- 7. How much is the actual pressure drop across the valve ΔP_{v1} for $h_1 = 0.4$?
- 8. What is the **relative stroke** h_2 that allows a flow rate $\dot{V}_2 = 155$ gal/min trough the valve
- 9. Check **cavitation** according to IEC norm