Last Name	Name	Student's code
Section 1.	TRUE/FALSE QUESTIONS	
1 The vorte	ex flowmeter must be mounted horizontally	<i>y</i>
true \Box false \Box 2. The typica	l span of a thermistor is: 50 – 250 °C.	
true \Box false \Box 3. The need of	of a stem guide arises in globe valves of lar	ge size
true 🗆 false 🗆		
4. The chang	e of direction imposed to the fluid is greate	er in a Z-body globe valve than in an Y-
body globe va	lve	
$\begin{array}{l} \text{true} \ \Box \\ \text{5.} \\ \text{In all } v \end{array}$	valves, the plug rotates only ever 90°	
true 🗆 false 🗆		
6. In the g	gate valve the closure member moves paral	llel to the main direction of flow
true 🗆 false 🗆		

Section 2. MULTIPLE CHOICE QUESTIONS

- 1. Which of the following tools is not used to measure pressure?
- a. 🗆 manometer
- b. \Box vacuum meter
- c. 🗆 vacuum gauge
- d. \Box pyrometer
- 2. A bib cock can be

NB: Just mark the wrong answer!

- a. \Box three-way
- b. \Box conically tapered plug
- c. \Box double seat
- d.
 □ butterfly

3. A bib cock can be

NB: Just mark the wrong answer!

- a. 🗆 globe
- b. \Box double seat
- c. 🗆 ball

- d. □ butterfly
- 4. A globe valve cannot be
- a. 🗆 linear
- b. 🗆 rotary
- c. \Box free-flow
- d. □ three-way
- 5. With reference to a control valve, which of the following statements is incorrect?
- a. \Box the normal flow is for $p_{vc} > p_v$
- b. $\hfill\square$ the semicritical flow is for $p_{vc} \leq p_v$ and $p_2 \! > \! p_v$
- c. \Box at vena contracta it is $p_{vc} \ge p_1$
- d. \Box the flow limit is for $p_{vc} < p_v$ and $p_2 \le p_v$

Section 3: SENSORS AND INSTRUMENTATION FOR PROCESS MEASURING

3.1 Application of a thermocouple

A thermocouple type **J** is employed to measure the temperature of superheated steam The **cold junction** of the measuring circuit is located at the known temperature T_{gf} =300 K. The voltmeter connected to the junction provides a measure of the electromotive force: E=40 mV.

a. Determine the temperature T_{gc} of the steam in °C, to the nearest ± 1 °C value

3.2 The Bourdon Manometer

a. Draw a simple scheme of operation

3.3 The electromagnetic flowmeter

a. Draw a simple scheme of operation

3.4 Time-of-travel ultrasound level sensor

a. Provide a simple explanation of the working principle

3.5. Sensor properties

a. Draw in a qualitative manner the **static characteristic** of a sensor affected by hysteresis

3.6. Contraction-based flow meters

- a. Derive the flow equation in the **ideal case for liquids**
- b. Use the flow equation to calculate the volumetric flow rate of water in the **ideal case** where
- P₁=100 kPa, P₂=50 kPa, d₁=100 mm, d₂=20 mm
- c. Extend the flow equation to the case the flow is **not ideal**
- d. Extend the flow equation to fluids with a **non-constant density**
- e. Discuss applications, advantages e disadvantages

NB:

A <u>well-organized and short</u> paragraph will be assessed more than a long and confused text!

Section 4: VALVES

4.1. The technology of valves

For the valve in each of the two drawings:

- a. What type is the valve
- b. What is the valve purpose?
- c. Is it a linear or rotary valve ?
- d. Identify the main component parts

NB: It's possible to put answers directly on or near the following drawings

4.2. Valve sizing problem

You're required to size and to choose a **valve** for the following conditions:

1. Calculate the flow coefficient C_v

You have available a **POLARIS** butterfly valve with the following manufacturer's table of C_v (US gal min⁻¹ psi^{-1/2}) as a function of the opening angle θ (as reported in a row for each DN):

DN (mm)	C _v (gpm psi ^{-1/2})								
	20°	30°	40°	50°	60°	70°	80°	90°	
40	3	5	11	18	26	45	70	80	
50	8	9	18	28	55	72	110	135	
65	10	15	27	44	85	110	168	210	
80	15	23	39	65	130	165	250	310	
100	27	41	71	115	230	300	465	540	
125	58	86	150	245	480	610	980	1100	
150	96	140	245	400	785	1010	1615	1910	
200	165	245	410	685	1275	1715	2670	3185	

2. Choose the best suitable DN for the valve

- 3. Plot the **intrinsic characteristic** of the chosen valve in a diagram
- 4. Which type is the **intrinsic characteristic**?

5. Calculate the salient points of the **flow curve**, plot them back in a diagram and determine if the valve operates under normal flow.

Next, you are requested to insert the chosen value in a flow circuit, assuming ΔP_n equal to the value (P₁ - P₂) originally adopted before, and considering the following three cases for the **utility pressure drop**:

a. $P_2 - P_3 \equiv \Delta P_u \equiv \Delta P_n$

b.
$$\Delta P_u \equiv \Delta P_n/2$$

c. $\Delta P_u = 2\Delta P_n$

6. How much is the **authority** V in the 3 cases?

Furthermore, under the condition $\Delta P_u = 2 \Delta P_n$

- 7. How much is the volumetric flowrate $\frac{1}{\sqrt{\theta}}$ passing through the value for $\theta = 40^{\circ}$?
- 8. How much is the **pressure drop** $\Delta P_{v,\theta}$ through the value for $\theta = 40^{\circ}$?