Surname	First Name
Section 1.TRUE/FALSE G	UESTIONS
1. A fail-safe valve with an electr electricity shuts down	ic motor as actuator moves always to the open position when
true	false □
2. The needle valve is commonly required	used for low flow rates and when a more accurate flow rate is
true 🗆	false □
3. A capacitive pressure transdutrue □	icer cannot measure a differential pressure false
4. The Bourdon pressure gauge true □	is based on the balance force principle false \Box

Section 2. MULTIPLE CHOICE QUESTIONS

- 1. The **Coriolis effect** is associated with the:
 - a.

 Level meter
 - b. D Mass flowmeter
 - c. \square Volumetric flowmeter
 - d. \square Pressure meter
- 2. What is **<u>not</u>** used to measure **flow rate** from the following working principle?
 - a. \Box electrical resistance variation
 - b. \Box ultrasound
 - c. \Box heat conductivity

3. Which one is <u>not</u> a contraction-based flow meter?

- a. \Box orifice plate
- b. D vortex-shedding flow meter
- c. 🛛 Venturi meter
- d. \Box flow nozzle
- 4. When the percentage variation of flow through a valve equals the percentage variation of plug movement, a valve has a
 - a.
 □ Linear flow characteristic
 - b.
 □ Equal percentage flow characteristic
 - c. \Box Quick opening flow characteristic
 - d. \square Parabolic flow characteristic
- 5. What occurs if the temperature of the **thermocouple** measuring junction is lower than the reference junction?
 - a. \Box There is not e_{mf} output
 - b. \Box The output voltage polarity is reversed
 - c. \Box The polarity stays the same but voltage increases
 - d. \Box The e_{mf} remains the same when temperature changes

Section 3: SENSORS AND INSTRUMENTATION FOR PROCESS MEASUREMENTS

3.1 Temperature measurement with thermocouple

A thermocouple of type N is used to measure the temperature of a fluid in a tank. When the reading of the voltmeter is 8.99 mV and the cold junction is at a temperature of 283.16 K, determine the temperature of the fluid with the approximation $\pm 1 \text{ K} = \pm 1 \text{ }^{\circ}\text{C}$

- a. 200 °C
- b. 300°C
- c. 350 K
- d. 323 K

3.2 The Resistance Temperature Detector (RTD)

a. Describe in 3 rows its **working principle**

3.3 Inductive Differential Pressure transducer

a. Describe in 3 rows its working principle

3.4 Level Sensors

a. Recognize as many as possible Level Sensors directly on the Figure

3.5 The general properties of Sensors

a. Describe in 3 rows definition and meaning of **repeatability**

Section 4: VALVES

4.1 Valve Classifications

a. Report in a schematic way and <u>discuss</u> all the general **valve classifications**

NOTE: A <u>well organized</u> and short paragraph will be assessed more than a long and confused text!

4.2 Valve technology

- a. Recognize the **type** of valve in the figure
- b. Is it a **linear** or **rotary** valve?
- c. What is its application purpose?
- d. Is it equipped with a **servomotor**?
- e. Is it equipped with a **positioner**?
- f. Recognize the main **component parts** of valve in the figure
- g. Is this type of valve subject to possible **cavitation**?

NOTE: It's possible to indicate parts directly on the following figure

4.3 Valve Sizing Problem

A **control valve** has to be chosen and sized at the following conditions: nominal pipe size: NPS = 125 mm fluid: sea water; density $\rho_f = 1.025$ kg/L upstream pressure: P₁= 1900 torr downstream pressure: P₂= 1290 torr nominal flow rate: $\dot{m} = 70$ kg/s vapor pressure: P_v = 4000 Pa liquid critical pressure ratio factor: F_F = 0.956

1. With respect to the above conditions, calculate the flow coefficient C_v

A GHIBSON butterfly valve is available with the following table of C_v (gal min⁻¹ psi^{-1/2}) as a function of the **opening angle** θ (for each nominal valve diameter reported in column):

	Nominal Diameter, mm							
θ, deg	50	65	80	100	125	150	200	
5	0	0	0	0	0	0	0	
10	0	0	0	0	0	0	0	
15	0.2	0.6	1.8	2.4	4.2	5.6	14	
20	0.9	2.5	5.2	9.5	15	83	110	
25	3	6.1	12	22	38	61	125	
30	6.1	11	21	39	69	112	211	
35	9.9	18	33	60	105	166	303	
40	15	27	49	88	148	228	405	
45	21	38	68	121	199	303	528	
50	29	51	91	159	262	394	679	
55	39	68	119	207	338	505	863	
60	53	90	156	269	434	641	1085	
65	72	121	209	357	565	820	1364	
70	92	161	283	487	768	1097	1788	
75	109	209	381	662	1059	1507	2425	
80	115	240	457	815	1303	1861	3043	
85	115	253	502	906	1457	2008	3642	
90	116	257	508	925	1492	2168	3838	

- 2. Size the valve selecting the proper nominal diameter.
- 3. Plot the **inherent characteristic** of the chosen valve.
- 4. What kind of **inherent characteristic** is?
- 5. Plot the **flow curve** of the selected valve and verify the flow condition with respect to **cavitation**.

Let us now consider the valve installed in a circuit plant assuming ΔP_n equal to the provided value $(P_1 - P_2)$ for the 3 following cases of the **user pressure drop**:

- a. $P_2 P_3 = \Delta P_u = \Delta P_n$
- b. $\Delta P_u = \Delta P_n/2$
- c. $\Delta P_u = 2\Delta P_n$
- 6. What is the **valve authority** V for the 3 cases?

For the case for which: $\Delta P_u = 2\Delta P_n$

7. What is the flow rate \dot{V} flowing in the value for $\theta = 35^{\circ}$?

Finally, the possibility to use the **same control valve** has to be checked when a 30% increase of the upstream pressure P_1 and a 50% increase of the nominal flow rate \dot{m} occur.

- 8. Is the flow coefficient of the selected valve in agreement to the sizing criterion of a valve for these flow conditions?
- 9. Does cavitation occur?
- 10. Can the selected valve be used in this case?