| Surn                                 | ame                                                                                                                      | Name                   | Student's code:                                          |  |  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------|--|--|--|
| Sect                                 | ion 1. QUIZ                                                                                                              |                        |                                                          |  |  |  |
| 1.                                   | The sonar level sensors always<br>a. true □                                                                              | provide the contemp    | orary measurement of the temperature false $\Box$        |  |  |  |
| 2.                                   | In a "air-to-open" valve the air<br>member from the seat                                                                 | operates on the act    | uator in order to move away the closure                  |  |  |  |
| 3.                                   | Closed-end liquid column manometers ("U" tube manometers) containing mercury are used for measuring pressure in a vacuum |                        |                                                          |  |  |  |
| 4.                                   | a. true □<br>When specifying a thermal mass<br>to be measured                                                            | s flowmeter, it is not | false $\Box$<br>necessary to know the specific gas types |  |  |  |
|                                      | a. true □                                                                                                                |                        | false □                                                  |  |  |  |
| Section 2. MULTIPLE CHOICE QUESTIONS |                                                                                                                          |                        |                                                          |  |  |  |
| 1.<br>□                              | Butterfly valves are:<br>rotary motion control valves<br>linear stem motion control valve                                | es                     |                                                          |  |  |  |

- $\Box$  ball control values
- $\square$  motorized control valves
  - 2. The working principle of a pressure transducer can be: NOTE: check only the wrong answer!
- □ piezoelectric
- □ radio
- $\Box$  inductive
- $\Box$  electric resistance
  - 3. Which one is NOT a dimensionless sensor property?
    - $\Box$  accuracy at the full scale
    - □ accuracy at the measured value
    - □ rangeability
    - □ sensitivity
  - 4. With reference to a control valve, which of the following statements is incorrect?
- a.  $\Box$  the normal flow is  $p_{vc} > p_v$
- b.  $\Box$  the semicritical flow is  $p_{vc} \leq p_v e p_2 > p_v$
- c.  $\Box$  it is in vena contracta  $p_{vc} \ge p_1$
- d.  $\Box$  the flow limit is  $p_{vc} < p_v$  and  $p_2 \le p_v$

# Section 3: SENSORS AND MEASURING INSTRUMENTS PROCESS

## **3.1** The Resistance Temperature Detector (RTD)

a. Describe in 3 rows its working principle

## 3.2 Inductive Differential Pressure transducer

a. Describe in 3 rows its working principle

## 3.3. Sensors' properties

a) Draw a suitable diagram just to show the difference between **accuracy** and **precision** for a process variable that is measured during time

b) Static characteristic: Provide the definition in 3 rows max

c) Static characteristic: Provide one example of it

### **3.4.** Throttle flow meters

a) Obtain the flow rate equation in the ideal case

b) Calculate the flow rate measured for water with the following data: P1=90 kPa, P2=60 kPa,

d1=55 mm, d2=25 mm

- c) Extend the flow rate equation to non-ideal cases
- d) Extend the flow rate equation to the case of non-constant density

# **3.5.** Positive-displacement flow meter

a. Please provide an explanation how it works (in 3 text lines)

#### 3.6 The rotary vane flow meter

a. Provide a schematic drawing of how it works

# Section 4: VALVES

#### 4.1 Valve technology

Draw a simple sketch, explain purpose and features of each one of the following valves.

- a. Ball cock
- b. Butterfly control valve
- c. Angle valve
- d. Three-way valve

NOTE: A well organized and short text will be assessed more than a long and confused one!

#### 4.2 Sizing Problem

The sizing is required for a valve under the following conditions:

liquid: ethyl alcohol density:  $\rho$ =806 kg/m<sup>3</sup> nominal diameter of the line: DN = 2 in nominal flow:  $\dot{m} = 12$  kg/s pressure upstream of the valve: P<sub>1</sub>= 15÷20 bar pressure downstream of the valve: P<sub>2</sub>= 14 bar vapor pressure: 0.02 bar Coefficient of the ratio of the critical pressure for liquids: F<sub>F</sub> = 0.956

1. Calculate the most suitable **flow coefficient**  $C_v$  for the above conditions

The following **diafragm valve "Xomox Straight-Thru screwed end"** with a scheme like the following one:

is available from the manufacturer, with:

- a unique intrinsic characteristic
- a recovery coefficient FL=0.7
- the following **manufacturer's Table**

| DN (in) | 1/2" | 1"   | 1 1/2"                     | 2"   |  |  |
|---------|------|------|----------------------------|------|--|--|
| h       | Cv   |      |                            |      |  |  |
| (%)     |      | [gpm | [gpm psi <sup>-0.5</sup> ] |      |  |  |
| 10      | 1.4  | 3    | 9.4                        | 14.8 |  |  |
| 20      | 2.8  | 6    | 18.7                       | 30   |  |  |
| 30      | 4.3  | 9.3  | 28.9                       | 46   |  |  |
| 40      | 5.8  | 12.5 | 39                         | 62   |  |  |
| 50      | 7.0  | 15   | 47                         | 74   |  |  |
| 60      | 8.2  | 17.5 | 55                         | 86   |  |  |
| 70      | 9.0  | 19.3 | 60                         | 95   |  |  |
| 80      | 9.9  | 21.3 | 66                         | 105  |  |  |
| 90      | 10.9 | 23.3 | 73                         | 114  |  |  |
| 100     | 11.7 | 25.0 | 78                         | 123  |  |  |



2. **Size the valve** for the above-mentioned problem, choosing the one with the most suitable DN.

3. Draw the **intrinsic characteristic** of the chosen valve

4. Calculate the three points of the **flow characteristic**, report them on a graph and determine if the valve operates in **normal flow**.

Subsequently, you are required to insert the chosen valve in a circuit, assuming  $\Delta P_n$  equal to the original value (P<sub>1</sub> - P<sub>2</sub>) and considering the "user" pressure drop:  $\Delta P_u = \Delta P_n/2$ 

5. How much is the authority V ?

- 6. Calculate the value of  $^{\rm V}$  n
- 7. How much is the flow rate  $V_1(h)$  that will pass through the value for  $h_1 = 0.2$ ?
- 8. How much is the actual pressure drop  $\Delta P_{v1}$  across the valve for  $h_1 = 0.2$ ?

9. How much will the relative stroke  $h_2$  be if a flow rate  $V_2(h) = 42.5$  gal(US)/min will pass through the valve inserted in the **circuit**?

Then, you are asked:

11. Under the nominal conditions and with the same  $\Delta P_n = (P_1 - P_2)$  used in the original sizing,

is the selected value able to pass a flow rate  $~V_{v}$  = 450 gpm of acetic acid, with density  $\rho {=}1049~kg/m^{3}$  ?

Again, you have to face the **verification problem** for the previously sized value:

12. Still in nominal conditions and with the  $\Delta P_n = (P_1 - P_2)$  used in the original sizing, what is the maximum flow rate of acetic acid that the selected valve is able to pass?