Last Name	Name	Student's code
Section 1. TRUE/FALSE	QUESTIONS	
1. The sensor span is the amplitu true □	de of the measuring range:	false □
 The needle valve is common required true □ 	ly used for low flow rates and v	when a more accurate flow rate is false \Box
 The membrane valve got this flowing fluid true □ 	name just because has a ceram	ic membrane in contact with the false \Box
 4. In a "air-to-open" valve the member from the seat true □ 	air operates on the actuator in o	order to move away the closure
5. The Bourdon pressure gauge true 🗆	is based on the balance force p	rinciple false □

Section 2. MULTIPLE CHOICE QUESTIONS

- 1. What is **<u>not</u>** used to measure **flow rate** from the following working principle?
 - a. \square electrical resistance variation
 - b. 🛛 ultrasound
 - c. \Box heat conductivity

 - 2. The **Coriolis effect** is associated with the:
 - a. \Box Level meter
 - b.
 D Mass flowmeter
 - c. \square Volumetric flowmeter
- 3. When the percentage variation of flow through a **valve** equals the percentage variation of plug movement, a valve has a
 - a.
 □ Linear flow characteristic
 - b. \square Equal percentage flow characteristic
 - c. D Quick opening flow characteristic
 - d. Derabolic flow characteristic
 - 4. Butterfly valves are:
 - a. \Box rotary motion control valves
 - b. \Box linear stem motion control valves
 - c. \Box ball control valves
 - d. \Box motorized control valves

Section 3: SENSORS AND INSTRUMENTATION FOR PROCESS MEASURING

3.1. Thermocouples

Look at the TC drawing:

- a. Is it a TC for industrial or laboratory use?
- b. Recognize the main parts, reporting briefly the description just on the drawing

Then look at the diagram below:

- a. What quantities do you have on the axes?
- b. What do the curves represent? Pls. describe it briefly

3.2. Inductive Pressure Transducer

- a) Recognize the constituent parts and indicate them just on the drawing.
- b) Where is exactly the fluid the pressure of which has to be measured?

3.3. Radioisotope Level Sensor

a. Draw a simple scheme showing its working principle

3.4 The general properties of the sensors

a. Give definition and meaning of precision

3.5. Mass Flow meters

- a. Describe the **working principle** of one device (of your choice) measuring the **mass flow rate** directly
- Pls. describe it briefly

3.6. Contraction-based flow meters

a. Draw a sketch of at least one contraction-based flow meter.

Section 4: VALVES

4.1. Divert Valve

- a. Describe the operating principle with the aid of a schematic drawing
- b. Draw the **normalized symbol**

4.2. Valve technology

- a. Recognize the type of this valve, which is shown at two different operation points in the figure
- b. Is it a linear or rotary valve?
- c. What is its application purpose?
- e. Is this type of valve subject to possible cavitation?
- d. Recognize the main component parts of valve in the figure

NOTE: It's possible to indicate parts directly on the following figure

4.3. Sizing Problem

A globe valve is selected and must be sized in a factory, under the following conditions:

fluid: Sea water density: $\rho_f = 1025 \text{ kg/m}^3$ nominal flow rate: $\dot{m} = 18 \div 22 \text{ lb/s}$ nominal diameter of the line: DN = 100 mm pressure upstream of the valve: P₁ = 18.1 psi pressure P₂ downstream of the valve: atmospheric vapor pressure: P_v = 0.1 psi coefficient of the ratio of the critical pressure for liquids: F_F = 0.956

1. Calculate the flow coefficient C_{ν} reasonably expected for the conditions of operation of the valve

A globe valve ENINE is available with all intrinsic characteristics, rangeability r = 20:1, and the Manufacturer's Table for C_{vn} listed below:

DN mm	C _{vn} US gal/(min•psi ^{0.5})
8	1.16
15	3.64
20	6.65
40	28
50	48
65	70
80	111
90	131
100	198

- 2. Size the valve for the problem under consideration, choosing the one with the most appropriate DN and **intrinsic characteristic**
- 3. Verify cavitation according to the IEC norm
- 4. Determine a new value of the vapor pressure P_v which would send the selected value to cavitation
- 5. What is the definition of the **installed characteristic**?
- 6. Select and adopt a value of the authority V that is congruent with your previous choice about the **intrinsic characteristic**
- 7. By setting $\Delta P_n = (P_1 P_2)$, calculate the nominal flow rate \dot{V}_n that will pass through the value installed in a circuit
- 8. What is the flow rate $V_1(h_1)$ that will pass through the value for $h_1 = 0.28$?
- 9. What is the actual pressure drop across the value ΔP_{v1} for $h_1 = 0.28$?
- 10. What is the relative stroke h_2 for which a flow rate $V_2(h_2) = 130$ gpm is passed through the valve inserted in the circuit?