Surname Name Student's code.:

There is no need

Indeed, it is NOT allowed to use a programmable calculator!

Section 1: TRUE/FALSE QUIZZES

Section 2: QUIZZES

- 1. Which controller action usually ensures **zero offset** from the desired set point?
	- a. \square pneumatic
	- $b. \Box$ proportional
	- c. \Box integral
	- d. \Box derivative
- 2. The PI controller transfer function is
	- a. \Box G_c=K_c[1+ τ _{IS}] b. \Box G_c=K_c[1+1/(τ _{IS})] c. \Box G_c=K_c[1/(1+ τ _Is)] d. \Box G_c=K_c/(τ _{IS})
- 3. The integral action, which is part of a PID algorithm, is often called:
	- a. \Box rate
	- $b. \Box$ reset
	- c. \Box gain
	- d. \square insert

Section 3: REFERENCE DYNAMIC MODELS

3.1. Response of a dynamic model

A thermometer has first-order dynamics with a time constant of 1 second, steady-state gain of 1. It is placed in a temperature bath at 120°F (Text). After the thermometer reaches steady state $(T_{ext}=T_m=120^{\circ}F)$, it is suddenly placed in a bath at 140 °F for $0 \le t \le 10$ s. Then T_{ext} is returned to the bath at 100 °F.

$$
T_{ext}(t) = 120 + 20 u(t) - 40 u(t - 10)
$$

Where $u(t)$ is the Heaviside step function.

- 1. Write the forcing function $T_{ext}(t)$ in terms of deviation variable(s) $T'_{ext}(t)$.
- 2. Write the forcing function $T'_{ext}(t)$ in the Laplace domain $(\hat{T}_{ext}(s))$.
- 3. Obtain the expression, in the Laplace domain, of the measured temperature $\hat{T}_m(s)$.
- 4. Obtain the expression of the time evolution of the measured temperature in terms of deviation variable $T'_m(t)$
- 5. Calculate the measured temperature at:
	- a. $t=0.5$ s;
	- b. $t=10.5$ s;
	- c. $t=15$ s.

Hints:

- The $\mathcal{L}^{-1}\lbrace e^{-t_d s} f(s)\rbrace = u(t t_d)f(t t_d)$ where $u(t)$ is the Heaviside step function.
- The provided table can be used to approximate the exponential decay function:

3.2 Stability of dynamic system

- a. provide the definition of **BIBO stability**
- b. does the **BIBO stability** apply to time-domain or Laplace-domain systems?

Section 4: CONTROL AND MONITORING

4.1. The feedback control

The figure shows a practical application of feedback control.

Among the various process variables (flow rate, etc.)

- 1. select the **measured variable**
- 2. select the **controlled variable**
- 3. select the **manipulated variable**
- 4. select the **disturbance variable** (if any)

Among the various process **block components** (tank, valves, pump, etc.)

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what type of signal is used in the **control loop?**
- 10. what is the role of the tank in the **control loop system?**

Section 5: CONTROLLERS

5.1 Tuning the PID controller

A **PID** controller is subjected to a first *tuning* procedure (*Approximate Model tuning*) and the dynamic system controlled by it at closed loop is subjected to a *step* response in the *set point* (see the **dynamic response** with a continuous curve in fig.).

Then, the same **PID** controller is subjected to an ITAE *tuning* procedure and the dynamic system controlled by it at closed loop is again subjected to a *step* response in the *set point* (see the **dynamic response** with dashed curve in fig.).

a. What is the ITAE formula?

 $\Box \int_0^\infty e^2 dt$ $\Box \int_0^\infty |e| dt$ $\int_0^\infty |e|dt$ $\Box \int_0^\infty t e^2 dt$ $\int_0^\infty t e^2 dt$ $\qquad \qquad \Box \int_0^\infty t |e| dt$

b. Which one of the 2 **dynamic responses** is better (and why)? Type your answer here!

c. Discuss (qualitatively) the characteristics of **dynamic response** with ITAE *tuning*. Type your answer here!

Section 6: MATHEMATICAL MODELLING

Consider the following isothermal reactor. A second-order reaction $A \rightarrow B$ occurs with reaction rate constant k. The volumes of liquid in the reactor, V, is constant; the flow rates F0, F1 are constant as well. The physical properties can be assumed constant and the output line is relatively short, so that a negligible time delay for this line can be expected $(C_2(t) = C_1(t))$.

You must:

- 1. write the **dynamical model** of the system;
- 2. write the **steady state** model of the system;
- 3. list **input**, **state**, **output** variables and the **parameters** of the model;
- 4. is the dynamical model a linear model? If not, **individuate and linearize the non-linear term(s);**
- 5. **write the model in the Laplace domain;**
- 6. **obtain the transfer function** describing the evolution of $C_2(s)$ with respect to the input variable(s);
- 7. **classify the obtained transfer function** and individuate the parameters.

A maintenance intervention on the plant modifies the path of the output line, increasing its length. Therefore, the assumption of negligible time delay t_d for the output line does not hold anymore and it is $(C_2(t) \neq C_1(t))$.

You must:

- 8. Write the **dynamical model** of the system;
- 9. **write the model in the Laplace domain**;
- 10. **obtain the transfer function** $G(s) = C_2(s)/C_0(s)$