Su	rname	Name	Student's code.:
	Indeed, it is NOT allo	There is no need wed to use a programn	nable calculator!
Se	ction 1: TRUE/FALSE QUIZZ	ŒS	
1.	A process with a transfer function have true □	ving a negative gain is s	aid to be reverse acting false □
2.	In a servo problem the aim is to track true \Box	the time varying set-po	int. false □
	The damping factor of a 2nd order sy true □ The zero of a rational transfer function true □	Ü	false □
Se	ction 2: QUIZZES		
1.	Which controller action usually ensura. □ pneumatic b. □ proportional c. □ integral d. □ derivative	res zero offset from the	desired set point?
2.	The PI controller transfer function is		
	$\begin{array}{ll} a. \ \Box \ G_c {=} K_c [1 {+} \tau_I s] \\ b. \ \Box \ G_c {=} K_c [1 {+} 1 {/} (\tau_I s)] \\ c. \ \Box \ G_c {=} K_c [1 {/} (1 {+} \tau_I s)] \\ d. \ \Box \ G_c {=} K_c {/} (\tau_I s) \end{array}$		
3. ′	The integral action, which is part of a l	PID algorithm, is often of	called:
	 a. □ rate b. □ reset c. □ gain d. □ insert 		

Section 3: REFERENCE DYNAMIC MODELS

3.1. Response of a dynamic model

A thermometer has first-order dynamics with a time constant of 1 second, steady-state gain of 1. It is placed in a temperature bath at $120^{\circ}F$ (T_{ext}). After the thermometer reaches steady state ($T_{ext}=T_m=120^{\circ}F$), it is suddenly placed in a bath at $140^{\circ}F$ for $0 \le t \le 10$ s. Then T_{ext} is returned to the bath at $100^{\circ}F$.

$$T_{ext}(t) = 120 + 20 u(t) - 40 u(t - 10)$$

Where u(t) is the Heaviside step function.

- 1. Write the forcing function $T_{ext}(t)$ in terms of deviation variable(s) $T'_{ext}(t)$.
- 2. Write the forcing function $T'_{ext}(t)$ in the Laplace domain $(\hat{T}_{ext}(s))$.
- 3. Obtain the expression, in the Laplace domain, of the measured temperature $\hat{T}_m(s)$.
- 4. Obtain the expression of the time evolution of the measured temperature in terms of deviation variable $T'_m(t)$
- 5. Calculate the measured temperature at:
 - a. t=0.5 s;
 - b. t=10.5 s;
 - c. t=15 s.

х	exp(-x)
0	1.00
0.25	0.78
0.5	0.60
0.75	0.47
1	0.37
1.5	0.22
2	0.14
2.5	0.08
3	0.05
3.5	0.03
4	0.02
≥ 4.5	0

Hints:

- The $\mathcal{L}^{-1}\{e^{-t_d s}f(s)\}=u(t-t_d)f(t-t_d)$ where u(t) is the Heaviside step function.
- The provided table can be used to approximate the exponential decay function:

3.2 Stability of dynamic system

- a. provide the definition of **BIBO** stability
- b. does the **BIBO stability** apply to time-domain or Laplace-domain systems?

Section 4: CONTROL AND MONITORING

4.1. The feedback control

The figure shows a practical application of feedback control.

Among the various process variables (flow rate, etc.)

- 1. select the **measured variable**
- 2. select the **controlled variable**
- 3. select the **manipulated variable**
- 4. select the **disturbance variable** (if any)

Among the various process **block components** (tank, valves, pump, etc.)

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what type of signal is used in the **control loop?**
- 10. what is the role of the tank in the **control loop system?**

Section 5: CONTROLLERS

5.1 Tuning the PID controller

A **PID** controller is subjected to a first *tuning* procedure (*Approximate Model tuning*) and the dynamic system controlled by it at closed loop is subjected to a *step* response in the *set point* (see the **dynamic response** with a continuous curve in fig.).

Then, the same **PID** controller is subjected to an ITAE *tuning* procedure and the dynamic system controlled by it at closed loop is again subjected to a *step* response in the *set point* (see the **dynamic response** with dashed curve in fig.).

- a. What is the ITAE formula?
- $\Box \int_0^\infty e^2 dt \qquad \Box \int_0^\infty |e| dt \qquad \Box \int_0^\infty t e^2 dt \qquad \Box \int_0^\infty t |e| dt$
- b. Which one of the 2 **dynamic responses** is better (and why)? Type your answer here!
- c. Discuss (qualitatively) the characteristics of **dynamic response** with ITAE *tuning*. Type your answer here!

Section 6: MATHEMATICAL MODELLING

Consider the following isothermal reactor. A second-order reaction $A \to B$ occurs with reaction rate constant k. The volumes of liquid in the reactor, V, is constant; the flow rates F0, F1 are constant as well. The physical properties can be assumed constant and the output line is relatively short, so that a negligible time delay for this line can be expected $(C_2(t) = C_1(t))$.

You must:

- 1. write the **dynamical model** of the system;
- 2. write the **steady state** model of the system;
- 3. list **input**, **state**, **output** variables and the **parameters** of the model;
- 4. is the dynamical model a linear model? If not, **individuate and linearize the non-linear term(s)**;
- 5. write the model in the Laplace domain;
- 6. **obtain the transfer function** describing the evolution of $C_2(s)$ with respect to the input variable(s);
- 7. **classify the obtained transfer function** and individuate the parameters.

A maintenance intervention on the plant modifies the path of the output line, increasing its length. Therefore, the assumption of negligible time delay t_d for the output line does not hold anymore and it is $(C_2(t) \neq C_1(t))$.

You must:

- 8. Write the **dynamical model** of the system;
- 9. write the model in the Laplace domain;
- 10. obtain the transfer function $G(s)=C_2(s)/C_0(s)$