Last name

Name

Student's code (matricola)

There is no need,

Indeed, it is NOT allowed to use a programmable calculator!

Section 1	- TD		SE O	リリフフFG
SECTION		UL/I AI	LOLW	UILLLO

1.	The		constant τ_p of a 1st order system coincides with the time r h 50% from the final value	required for the step response
		True [false □
2.		The da	imping factor of a 2nd order system can also be negative	
		True 🛚]	false □
3.	The		alibration formulas minimize the integral of the error mod	
		True 🗆		false □
4.	If a	_	transfer line covers a distance L and the signal travels wi on is $G(s)=\exp(-(L/v)s)$	th a speed v, then its transfer
		True 🗆		false □
5.	A f		k controller requires a regular measurement of at least or ne control system working properly	ne output variable in order to
		True 🛚	· · · · · · · · · · · · · · · · · · ·	false □
S	ect	ion 2	2: MULTIPLE CHOICE QUIZZES	
1.		The La	aplace transform cannot be used to solve:	
			second order differential equations	
			linear or linearized differential equations	
			nonlinear differential equations	
			linear equations containing time-delayed or lead-time fur	nctions
2.			one of the following definitions does not apply to a feedly	back controller?
a.			action"	
b.			se action"	
c.		a relay		
d.		FOPD	Τ	
3.		The PI	controller transfer function is	
a.			$[1+ au_{ ext{IS}}]$	
b.			$[1+1/(\tau_{1S})]$	
c.			$[1/(1+\tau_{\rm IS})]$	
d.		$G_c=K_c$	/(tis)	
4.		Which	of the following "parameters" is not included in the 2nd of	order system law?
a.		Proces	-	
b.		oversh		
c.			l oscillation period	
d.		Dampi	ng factor	
5.		The of	fset is:	
a.		$y_{\infty} - y_{\Sigma}$		
b.		$y_{SP}(t)$ -		
c.		$y_{\infty}-y_{1}$		
d.		Alway	s Positive	

Section 3: DYNAMIC REFERENCE MODELS

3.1 1st order in series

a. Please recognize and the classify (type, order, etc.) the **dynamical system** determined by the process configuration in figure, where

 $\dot{V}_i(t) = q_i(t)$ is the input liquid volumetric feed rate,

 $\dot{V}_1(t) = q_1(t)$ is the output volumetric flow rate from the system component 1,

 $\dot{V}_2(t) = q_2(t)$ is the output volumetric flow rate from the whole plant

b. Under the assumption of linear outflow from each tank, determine the TF $G(s) = h_2(s)/q_i(s)$

3.2. Forcing functions

Provide

- a. a textual description,
- b. Then the mathematical formulation,
- c. Finally the graphical pattern

for each one of the main forcing functions you consider useful for reference investigation on the dynamical response of linear systems.

pag. 3 of 7 SCPC

Section 4: PROCESS REGULATION AND CONTROL

4.1. Feedback control

The figure introduces a practical application of feedback control in a simplified process drawing.

Among the various process variables (flow rate, etc.)

- 1. select the **measured variable**
- 2. select the **controlled variable**
- 3. select the **manipulated variable**
- 4. select the **disturbance variable** (if any)

Among the various process **block components** (tank, capacitance probe, etc.)

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what is the role of the tank in the **control loop system?**

pag. 4 of 7 SCPC

Section 5: CONTROLLERS

5.1. The *relay* controller

- a. draw the **error** $\varepsilon(t)$ *controller output* o(t) diagram in presence of **hysteresis**
- b. explain briefly what hysteresis is
- c. provide an application example of a relay controller

5.2 PID controller tuning

The following diagrams report the **dynamical response** (see the upper curve) to a **step input** (see the lower curve) for three processes whose dynamics is unknown. It is required to tune a **PID** control for each of them.

NOTE: only <u>qualitative</u> answers are required: numerical computation need not be performed!

- a. Which approximating dynamical model would you adopt for a process giving its step test response as in the following figure?
- b. List the parameters involved in this model
- c. Which tuning rules do you believe can be used in this case?

- d. Which approximating dynamical model would you adopt for a process giving its step test response as in the following figure?
- e. List the parameters involved in this model
- f. Which tuning rules do you believe can be used in this case?

- g. Which method has been used to generate this dynamical response (see output) in this third process?
- h. List the parameters involved in it
- i. Which tuning rules do you believe can be used in this case?

Section 6: MATHEMATICAL MODELS

6.1. Development of a dynamic mathematical model for a lumped parameter system

In a mixer (see figure),

a stream of a hot fruit juice at T_w with a feed rate \dot{m}_w is to be thermally tempered.

To this end, it is mixed in the tank with a ground ice stream \dot{m}_i entering at $T_i = 0$ °C, up to a complete fusion of ice, and with a stream of saturated steam entering with a feed rate \dot{m}_s at a temperature maintained always equal to that of the tank, i.e., $T_s = T_o$, up to a complete condensation of steam to water.

The following assumptions hold:

- i.The saturated steam condenses completely
- ii. The tank is perfectly mixed
- iii. The density of liquid ρ is constant
- iv. The specific heat of the liquid cp is constant
- v. The feed rate \dot{m}_w is constant
- vi. The ground ice flow rate \dot{m}_i is constant
- vii. The saturated steam flow rate \dot{m}_s is constant

The variable to be predicted by the model is the liquid temperature $T_{\rm o}(t)$.

- 1. Can the level h_1 be considered constant: $\neq h(t)$
- 2. Write the mathematical model in stationary
- 3. Write the dynamic mathematical model
- 4. Classify the dynamic mathematical model thus obtained
- 5. Locate input, status and output variables as well as model parameters
- 6. Discuss which of the input variables can be taken as a forcing function and reasonably like that, given the nature of the problem
- 7. Express the model in deviation variables
- 8. Take, if possible, the dynamic model in canonical form in the domain of time
- 9. Take the dynamic mathematical model into the Laplace domain
- 10. Determine the possible transfer function/functions
- 11. What is the order of the transfer function?

