Surname Name

Section 1: TRUE/FALSE QUIZZES

- 1. The **ITSE criterion** is based on the integral of the time-weighted absolute error true \square
- 2. The inverse Laplace transform of a constant does not exist in the **time domain** true \square
- 3. The output variable of a **relay controller** always assume an even number of values true \square
- 4. The dynamic response of an input step change of a system controlled by a **P-only controller** always shows an **offset**

true \square

Section 2: MULTIPLE CHOICE QUIZZES

- 1. If τ is the **characteristic time** of a self-regulating first-order system to which an input step test is applied, the 99% of the **new steady state value** for the output is reached after at least:
	- a. \square τ
	- b. \Box 3τ
	- c. \Box 5 τ
	- d. \Box 7 τ
- 2. The **Laplace transform** cannot be used to solve:
	- a. \Box second order differential equations
	- b. \Box linear or linearized differential equations
	- c. \Box nonlinear differential equations
	- d. \Box linear equations containing time-delayed or lead-time functions
- 3. The transfer function of a **PI controller** is:
	- a. \Box G_c=K_c[1+ τ _{IS}]
	- b. \Box G_c=K_c[1+1/(τ _{IS})]
	- c. \Box G_c=K_c[1/(1+ τ _{IS})]
	- d. \Box G_c=K_c/(τ _{IS})
- 4. Which among the following ones is not a **TUNING performance criterion**?
	- a. \Box overshoot minimization
	- b. \Box evaluation of the minimum of the error integral
	- c. \Box zero tangent at the origin of the input step response
	- d. \Box Decay ratio = 1/4

Section 3: REFERENCE DYNAMIC MODELS

3.1. A parametric model

The dynamics of a process is described by the following **transfer function (TF)**:

$$
G_p(s) = \frac{3s + 7q}{s^2 + ps + \frac{7}{9}}
$$

where p and q are two **parameters**.

- a) Which is the **order** of this system?
- b) Assign a suitable value to **parameter** q such that the **TF** has a **zero** equal to -3
- c) Assign a suitable value to **parameter** p such that the **TF** has 2 **coincident poles**
- d) What is the **static gain** K_p as a consequence of the assigned values of p and q?
- e) Find the **poles** of Gp(s)
- f) Assign a new value to **parameter** p such that the corresponding dynamical system is **undamped**
- g) Find the **poles** of $G_p(s)$ obtained for this latter case
- h) Draw a **quantitative plot** in which the step-test response for this latter system is shown
- i) What happens to the dynamic system if $p < 0$?

3.2 FOPDT model

- a. Show the **characteristic parameters** and write the transfer function.
- b. Is it a **linear model**?
- c. It can also be defined as a model of **systems in series**. Why?
- d. How would you classify its **general dynamical behavior in an open loop**?
- e. Draw a quantitative plot of its response to a step variation of the input variable.
- f. Illustrate an **example of a real system** in process engineering whose transfer function is well approximated by a FOPDT model

3.3. Stability of dynamic system

- a. provide the definition of **BIBO stability**
- b. does the **BIBO stability** apply to time-domain or Laplace-domain systems?

Section 4: PROCESS REGULATION AND CONTROL

4.1. Feedback control

The figure introduces a practical application of feedback control in a simplified process drawing.

Among the various process variables (flow rate, etc.)

- 1. select the **measured variable**
- 2. select the **controlled variable**
- 3. select the **manipulated variable**
- 4. select the **disturbance variable** (if any)

Among the various process **block components** (tank, valves, impeller, etc.)

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what is the role of the tank in the **control loop system?**

Section 5: CONTROLLERS

5.1. Controller tuning

- a. What is tuning?
- b. For which type of controllers is **tuning** required?
- c. Describe **briefly** and **schematically** the controller tuning procedure that is adopted in a **closed loop** configuration.

Section 6: MATHEMATICAL MODELING

6.1 Development of a mathematical model for a lumped-parameter system

A calandria evaporator (see Figure) concentrates a saline solution (feed) that enters with a mass flow rate \dot{m}_{in} at a temperature T_{in}; leaves with a mass flow rate \dot{m}_{out} and, obviously, a greater salt concentration; evaporates water with a mass flow rate \dot{m}_v .

The evaporator is a circular section, has a conical V_C volume bottom always full of the solution, a cylindrical body of cross-section A, a calandria that is installed inside the cylindrical body, consists of a tube bundle (always submerged) that it occupies a V_T volume and has an exchange surface S.

The thermal power \dot{Q} required for evaporation is supplied by a saturated condensing steam with a mass flow rate $\dot{m}_{\rm st}$ at a temperature T_{st}.

The variable that is intended to be predicted by a dynamic model is the temperature $T(t)$ of the saline solution inside the evaporator.

The following **hypotheses** hold:

- I. Perfect mixing of the liquid in the evaporator
- II. The evaporator is perfectly insulated and there are no thermal losses to the outside
- III. The liquid density ρ is constant
- IV. The latent evaporation heat of the saline solution $\lambda = \text{const.}$
- V. The specific heat of the saline solution $c_p = \text{const.}$
- VI. The Global thermal exchange coefficient $U = const.$
- VII. The liquid level in the evaporator is constant
- VIII. The thermal power $\dot{\theta}$ supplied by condensing steam for saline water evaporation is constant

You must:

- 1. Write the mathematical model in stationary
- 2. Write the dynamic mathematical model
- 3. Classify the dynamic mathematical model thus obtained
- 4. Locate input, status and output variables as well as model parameters
- 5. Discuss which of the input variables can be taken as a forcing function and reasonably like that, given the nature of the problem
- 6. Express the model in deviation variables
- 7. Take, if possible, the dynamic model in canonical form in the domain of time
- 8. Take the dynamic mathematical model into the Laplace domain
- 9. Determine the possible transfer function/functions
- 10. What is the order of the transfer function?

ADDENDUM

The VIII assumption is no longer valid and is replaced by the following one:

VII bis the mass flow rate of the condensing steam \dot{m}_{st} is changing with time

11. What changes in the dynamic mathematical model thus obtained?