Sı	irname	Name	Matricola	
Se	Section 1: TRUE/FALSE QUIZ			
1.	In a process, a transfer function true □	having a positive gain	n is called direct acting false □	
2.	In the servo problem, the load is true \Box	s constant while the se	t point is variable in time false □	
3.	In a transfer function $G(s)$, the true \Box	variable s belongs to the	he field of real numbers. false □	
4.	The <i>offset</i> is defined as $y_{SP}(t) - y_{SP}(t) = y_{SP}(t)$	$y_{\rm m}(t)$	false □	

Section 2: MULTIPLE CHOICE QUIZ

1. What is not a **final control element**?

- a. \Box hydraulic piston
- b. 🗆 pump
- c. \Box relay controller
- d. \Box heating element
- 2. What is not a parameter of the control law of the **PID controller**?
 - a. 🗆 bias
 - b. \Box integral time
 - c. \Box derivative time
 - d. \Box process gain

1. What is not a **TUNING performance criterion** between the following?

- a. \Box overshoot minimization
- b. \Box evaluation of the minimum of the error integral
- c. $\hfill\square$ zero tangent at the origin of the input step response
- d. \Box Decay ratio = 1/4

3. The **transfer function** of a PI controller is:

- a. $\Box \quad G_c = K_c [1 + \tau_I s]$
- b. \Box $G_c=K_c[1+1/(\tau_I s)]$
- c. \Box $G_c=K_c[1/(1+\tau_I s)]$
- $d. \quad \Box \quad G_c {=} K_c / (\tau_I s)$
- 4. When the K_c of a PID controller is doubled, the **rise time** of the unit step response in a closed loop
 - a. \Box does not change
 - b. \Box doubles
 - c. \Box decreases

d. □ increases

Section 3: REFERENCE DYNAMIC MODELS

3.1 1st order systems in series

Figure 1. Non-Interacting Tank System

b. What is the **transfer function** of N non-interacting systems in series, each having its own TF $G_i(s)$?

3.2. Properties of the 2nd order dynamic response

A 2^{nd} order linear dynamic system has a static gain $K_p = 2.25$, a time constant $\tau = 1.3$ s, a

damping factor $\zeta = 0.2$. For a unit step input response:

- a. what is the value of the dynamic response after a time t = 3.7s?
- b. what is the **overshoot**?
- c. what is the value of the **overshoot**?
- d. what is the **decay ratio**?
- e. what is the value of the **decay ratio**?
- f. what is the value of the **period of oscillation**?
- g. what is the value of the **rise time**?
- h. if $\zeta = 0.6$, what will be the value of the **overshoot**?

NOTE: you can use the dimensionless diagram of the dynamic response to the step input change

Section 4: PROCESS REGULATION AND CONTROL

4.1. Feedback control

The figure introduces a practical application of feedback control in a simplified process drawing.

Among the various process variables (flow rate, etc.)

- 1. select the **measured variable**
- 2. select the **controlled variable**
- 3. select the **manipulated variable**
- 4. select the **disturbance variable** (if any)

Among the various process **block components** (tank, valves, impeller, etc.)

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what is the role of the tank in the **control loop system?**

Section 5: CONTROLLERS

5.1. The PID controller

- a. provide the definition of ${\boldsymbol{error}}\; \epsilon(t)$ supplied to the controller
- b. explain what the controller **bias** is

Section 6: MATHEMATICAL MODELLING

6.1. Development of a dynamic mathematical model for a lumped-parameter system

The system in the figure is used for the addition of fresh water, with a volumetric flow rate \dot{V}_w and temperature T_w , to warm salt water that enters from above with a volumetric flow rate \dot{V}_i and temperature T_i (t), and exits at the center of the convex bottom with a volumetric flow rate \dot{V}_o at temperature T(t).

The variable, which you want to predict by the model, is the temperature $T_d(t)$ measured "at distance" after a long pipe of length L and of negligible volume.

The following **hypothesis** are assumed:

- 1. The water temperature T_w is constant
- 2. The liquid density ρ is constant
- 3. The liquid level h_s is constant
- 4. The tank is perfectly mixed

- 5. The pipe is perfectly insulated
- 6. The specific heat c_p of the liquid is constant

You must:

- a. write a **steady state model**
- b. write a **dynamical model** in the **time domain**
- c. **classify** the obtained dynamical model
- d. list input, state, output variables and the parameters of the model
- e. discuss which input variables can be assumed as **forcing functions** and which are their possible **functional forms** for this physical problem
- f. write the dynamic model in terms of the **deviation variables**
- g. put the **dynamical model** in the **canonical form**
- h. transpose the dynamic model into the Laplace domain
- i. obtain the **transfer function**