Last Name Student's code

Section 1: TRUE-FALSE QUIZZES

1.	The time constant τ_p of a first order system is the time interval which response reaches the 50 % of its final steady-state value true \square	ch elapses before the step false □
2.	The ISE tuning method requires the minimization of the integral of true \Box	f the error norm false □
3.	The Laplace transform can be applied to linear dynamical systems true \square	only false □
1.	In the servo problem, the load is constant while the set point is varieting \Box	able in time false □
5.	The \textbf{zero} of a rational transfer function is a value of s for which the true \Box	denominator is equal to zero false □

Sezione 2: MULTIPLE CHOICE QUIZZES

1.	An industrial regulator can be:		
		NC	OTE: choose the <u>wrong</u> answer!
	a.		a "direct acting" regulator
	b.		an "inverse acting" regulator
			a relay regulator
	d.		a FOPDT regulator

2.	W	hich	of the following ones is not an actuator ?
	a.		hydraulic ram
	b.		centrifugal pump
	C	П	relay controller

3. The transfer function of a **PD controller** is:

d. □ heating or cooling element

- $$\begin{split} a. & \quad \square \quad G_c = K_c[1+t_ds] \\ b. & \quad \square \quad G_c = K_c[1+1/(\tau_Ds)] \\ c. & \quad \square \quad G_c = K_c[1+\tau_Ds)] \\ d. & \quad \square \quad G_c = K_c/(\tau_Ds) \end{split}$$
- 4. The **offset** is:
 - a. \square $y_{\infty} y_{SP}(t)$ b. \square $y_{SP}(t) - y_{\infty}$ c. \square $y_{\infty} - y_{m}(t)$
 - d. \square always positive

5. In the following simplified scheme of a car automatic control the disturbance is:

- a. □ steering wheel position
- b. □ throttle lever position
- c. □ wind drag
- d. \square car speed

Section 3: REFERENCE MATHEMATICAL MODELS

3.1. Parametric model

A process is described by the following ODE:

$$3\frac{\mathrm{d}y}{\mathrm{d}t} + py = 3f(t)$$

where y(t) is the **state variable** as a deviated variable, f(t) the **input variable** as a deviated variable and p is a **parameter**.

- a. What **order** is this dynamic system?
- b. Determine the **transfer function**, $G_p(s)$, of this process
- c. Assign a suitable value to **parameter** p so that $\tau_P=1.5$ min
- d. Provide an example of **forcing function** f(t) which makes **BIBO unstable** this dynamic system
- e. Assign another value to parameter p so that this dynamic system becomes purely capacitive

Pag. 2 of 6

Section 4: PROCESS REGULATION AND CONTROL

4.1. Feedback control

The figure introduces a practical application of feedback control in a simplified P&ID.

Among the various process variables (flow rate, etc.)

- 1. select the **measured variable**
- 2. select the **controlled variable**
- 3. select the **manipulated variable**
- 4. select the **disturbance variable** (if any)

Among the various process block components (tank, valves, pump, etc.)

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what is the role of the tank in the **control loop system?**
- 10. what is the role of the **pump?**

Section 5: CONTROLLERS

5.1. The controller

- a. for a **PID controller**, provide the control law in the Laplace domain
- b. for a **PID controller**, explain what the controller **bias** is
- c. for a relay controller, explain briefly what the hysteresis is for

Section 6: MATHEMATICAL MODELLING

6.1. Development of a mathematical model for a lumped-parameter dynamical system

6.1.a

For the storage and delivery of an aqueous solution of nutraceutical additives in food industry two non-interacting, insulated tanks are used (see Figure).

The aqueous solution enters with a temperature $T_i(t)$ from the top of the tank No.1, with a volume V_1 , and leaves with a temperature $T_2(t)$ the tank No.2, with a volume V_2 .

The following **hypotheses** hold:

- 1. Fluid level is constant in each of the 2 tanks
- 2. The volumetric flow rate \dot{V} is constant
- 3. Perfect mixing holds in each of the 2 tanks
- 4. Heat losses are negligible
- 5. $\rho = \cos t$.
- 6. $c_p = cost$.

The variable that you want to predict in a dynamic model is the temperature $T_2(t)$.

You must:

- a. Write a **steady state** model
- b. Write a **dynamical** model
- c. **classify** the obtained dynamical model
- d. list **input**, **state**, **output variables** and the **parameters** of the model
- e. discuss which input variables can be assumed as **forcing functions** and which are their possible functional forms for this physical problem
- f. write the model using the **deviation variables**
- g. find the corresponding form of this **dynamical** model in the **Laplace domain**
- h. write the **transfer function**
- i. classify the transfer function

6.1.b

Later, a modification is introduced for the storage and delivery of the aqueous solution of nutraceutical additives in food industry with one insulated tank followed by an insulated, long, small-diameter pipe **coil** of overall length L and of negligible volume (see new Figure below).

The variable that you want to predict in a dynamic model is still the exit temperature $T_2(t)$.

You must:

- j. Write a **dynamical** model
- k. write the **transfer function**
- 1. discuss and compare the **transfer function** between the case 6.1.a and 6.1.b

