Surname Name Student's code.:

There is no need Indeed, it is NOT allowed to use a programmable calculator!

Se	ection 1: TRUE/FALSE QUIZZES	
1.	A non-self-regulating first order dynamical system an impulse perturbation is applied, the regime a	approached by this system after it is still P.
	true 🗆	false □
2.	A dynamic system of the 3rd order always con	sists of 3 systems of 1st order in series
	true □	false □
3.	A linear dynamical system is BIBO stable if negative real part.	its transfer function has at least one pole with a
	true 🗆	false □
1	In a regulator problem the aim is to track the ti	
т.	true	false □
Se	ection 2: QUIZZES	
a. b. c.	An industrial controller can be: NB: mark only the wrong answer! □ "direct action" □ "reverse action" □ relay □ FOPDT	
a. b. c.	The offset is: $ \Box y_{\infty} - y_{SP}(t) $ $ \Box y_{SP}(t) - y_{\infty} $ $ \Box y_{\infty} - y_{m}(t) $ $ \Box always positive $	
a.	 Which of the following "parameters" is not included in the 2nd order system law? □ Process gain □ overshoot 	
c.	□ Natural oscillation period	
d.	☐ Damping factor	

Section 3: REFERENCE DYNAMIC MODELS

3.1. Response of a dynamic model

The dynamic behavior of a **temperature sensor** can be approximated by a transfer function model:

$$G(s) = \frac{\widehat{T_m}(s)}{T(s)} = \frac{\frac{1}{2}}{\left(s + \frac{1}{2}\right)}$$

where T_m and T are the measured and actual temperatures. The system is at its steady-state (SS) value, with actual and measured temperature of 25°C: $T_{ss} = T_{m_{SS}} = 25$ °C.

Suppose that at time t = 0 min, the actual temperature begins vary according to the following time law:

$$T(t) = 25 + 25 \left[1 - \exp\left(-\frac{t}{10}\right) \right]$$

- 1. Write the forcing function T(t) in terms of deviation variable(s) T'(t).
- 2. Write the forcing function T'(t) in the Laplace domain $(\widehat{T}(s))$.
- 3. Obtain the expression, in the Laplace domain, of the measured temperature $\widehat{T_m}(s)$.
- 4. Obtain the expression of the time evolution of the measured temperature in terms of deviation variable $T'_m(t)$.
- 5. At very long time $(t\rightarrow\infty)$, what is the maximum variation in the measured temperature, $T_m(t)$?
- 6. At t=5 s, what is the temperature $T_m(t)$ measured by the thermometer $T_m(t)$?

х	exp(-x)
0	1.00
0.25	0.78
0.5	0.60
0.75	0.47
1	0.37
1.5	0.22
2	0.14
2.5	0.08
3	0.05
3.5	0.03
4	0.02
≥ 4.5	0

Section 4: CONTROL AND MONITORING

4.1. The feedback control

A process stream is heated using a shell and tube heat exchanger.

- 1. select the **controlled variable**
- 2. select the manipulated variable
- 3. select the **disturbance variable/s** (if any)
- 4. draw the **closed loop block diagram** for this particular process control

Among the various process **block components** (heat exchanger, valves, etc.) individuate on the P&ID (sketched as an answer to the above question 1.) the characteristic **components** of automatic control present in this process:

- 5. select the **sensor/measuring device**
- 6. select the **comparator**
- 7. select the **actuator**
- 8. select the **final control element**
- 9. what type of signal is used in the **control loop?**
- 10. what is the role of the heat exchanger in the **control loop system?**

Section 5: CONTROLLERS

5.1 Tuning the PID controller

A **PID** controller is subjected to a first *tuning* procedure (*Approximate Model tuning*) and used to control a dynamic system at **closed loop** for *set point tracking* (see the **dynamic response** with a continuous curve in fig.) following a *step* response.

Then, the same **PID** controller is subjected to an ITAE *tuning* procedure, and the dynamic system controlled by it at closed loop is again subjected to a *step* response in the *set point* (see the **dynamic response** with dashed curve in fig.).

a. What is the ITAE formula?

$$\Box \int_0^\infty e^2 dt \qquad \qquad \Box \int_0^\infty |e| dt \qquad \qquad \Box \int_0^\infty t e^2 dt \qquad \qquad \Box \int_0^\infty t |e| dt$$

b. Which one of the 2 **dynamic responses** is better (and why)? Type your answer here!

c. Discuss (qualitatively) the characteristics of **dynamic response** with ITAE *tuning*. Type your answer here

5.2 Open-loop PID Tuning with the "process reaction curve" - method of Cohen and Coon

An unknown process at open loop is stimulated, at time 0 s, in its input by a **unit step function** and, in the open loop configuration, the response of the process variable (to be controlled at closed loop) is recorded (solid stars in the curve of the attached figure).

Approximate the **open loop transfer function**, whose step response is in the figure above, with a FOPDT transfer function.

- 1. Determine the process gain K_p
- 2. Determine the time constant τ_P
- 3. Determine the dead time t_d
- 4. Which type of PID controller tuning formula can be used?

Section 6: MATHEMATICAL MODELLING OF A LUMPED PARAMETER SYSTEM

A sequence of well mixed tanks is depicted in the figure below.

The temperature of the inlet stream, $T_{in}(t)$, can vary in time, whereas all the mass flow rates are constant. The valves R_1 and R_2 assure a linear output flow rate with respect to the driving force, i.e., the effective level. The thermal-physical properties can be assumed constant.

You must

- 1. write the **dynamical model** of the system;
- 2. write the **steady state** model of the system;
- 3. list **input**, **state**, **output** variables and the **parameters** of the model;
- 4. is the dynamical model a linear model? If not, **individuate and indicate the non-linear terms**.
- 5. write the model in the Laplace domain;
- 6. **obtain the transfer functions** describing the relation between the input and output variables;
- 7. **classify the obtained transfer functions** and individuate the parameters.

Given the inlet flow rate of 1 L/min, and the $R_1 = R_2 = 1 \text{ min/dm}^2$:

8. What are the respective liquid levels, h₁ and h₂, in the two tanks?