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THE CFD APPROACH

• Assembling the governing equations
• Identifying flow domain and boundary conditions
• Geometrical discretization of flow domain
• Discretization of the governing equations
• Incorporation of boundary conditions
• Solution of resulting algebraic equations
• Post-solution analysis and reformulation, if needed



OUTLINE

• Basics of finite difference (FD) methods
• FD approximation of arbitrary accuracy
• FD formulas for higher derivatives
• Application to an elliptic problem
• FD for time-dependent problems
• FD on non-uniform meshes
• Closure



Basics of Finite Difference Methods

• FD methods are quite old and somewhat dated for CFD problems but
serve as a point of departure for CFD studies

• The principal idea of CFD methods is to replace a governing partial 
differential equation by an equivalent and approximate set of algebraic 
equations

• Finite difference techniques are one of several options for this
discretization of the governing equations

• In finite difference methods, each derivative of the pde is replaced by 
an equivalent finite difference approximation 



Basics of Finite Difference Methods

• The basis of a finite difference method is the Taylor series expansion of a 
function.

• Consider a continuous function f(x).  Its value at neighbouring points can 
be expressed in terms of a Taylor series as

(1) f(x+ ∆x) = f(x) + df/dx (∆x)  + d2f/dx2 (∆x2)/ 2! + .. + dnf/dxn (∆xn)/n! + ..

• The above series converges if ∆x is small and f(x) is differentiable

• For a converging series, successive terms are progressively smaller



FD Approximation for a First Derivative

• The terms in the Taylor series expansion can be rearranged to give

df/dx = [f(x+ ∆x) - f(x)] / ∆x - d2f/dx2 (∆x)/2! - …-dnf/dxn (∆xn-1)/n! - ...
Or

(2) df/dx ≈ [f(x+ ∆x) - f(x)] / ∆x  + O(∆x)

• Here O(∆x) implies that the leading term in the neglected terms of the 
order of ∆x, i.e., the error in the approximation reduces by a factor of 2 if 
∆x is halved.

• Equation (2) is therefore a first order-accurate approximation for the first 
derivative. 



Other Approximations for a First Derivative

• Other approximations are also possible.  Writing the Taylor series 
expansion for f(x- ∆x), we have

(3) f(x-∆x) = f(x) - df/dx (∆x)  + d2f/dx2 (∆x2)/ 2! - .. + dnf/dxn (∆xn)/n! +

• Equation (3) can be rearranged to give another first order approximation :

(4) df/dx ≈ [f(x) - f(x-∆x)] / ∆x  + O(∆x)

• Subtracting (3) from (1) gives a second order approximation for df/dx :

(5) df/dx ≈ [f(x+ ∆x) - f(x-∆x)] / (2∆x)  + O(∆x2)



FD Approximations on a Uniform Mesh

• Consider a uniform mesh with a spacing of ∆x over an interval [0, L]
• Denoting the mesh index by i, we can write 

fi = f(xi) = f(i ∆x)  and  fi+1 = f [(i+1) ∆x]  and so on

• Then
(2) ⇒ df/dx ≈ [f(x+ ∆x) - f(x)] / ∆x = (fi+1 - fi)/∆x  + O(∆x)
(3) ⇒ df/dx ≈ [f(x) - f(x- ∆x) ] / ∆x = (fi- fi-1)/∆x  + O(∆x)
(5) ⇒ df/dx ≈ [f(x+ ∆x) - f(x-∆x)] / (2∆x) = (fi+1- fi-1)/(2∆x) + O(∆x2) 
are the forward “one-sided”

backward “one-sided”
central “symmetric”

differencing formulas, respectively, for df/dx at x or node i
• One-sided formulas are necessary at ends of domains



Higher Order Accuracy

• Higher order of accuracy of approximation can be obtained by including 
more number of adjacent points

• Let us seek a third-order, one-sided approximation for u(x).  This requires 
four points and will be of the form 

(6) du/dx)i = [aui + bui+1 + cui+2 + dui+3]/ ∆x + O(∆x3)

• This is equivalent to writing (6) as 
(7) du/dx)i = [aui + bui+1 + cui+2 + dui+3]/ ∆x + (0) d2u/dx2(∆x)  

+ (0)d3u/dx3(∆x2) + (e) d4u/dx4(∆x3) 
or 
(8) aui + bui+1 + cui+2 + dui+3 = + du/dx (∆x) + (0) d2u/dx2(∆x2)  

+ (0)d3u/dx3(∆x3) - (e) d4u/dx4(∆x4) 
• How to find a, b, c and d?



Third-Order, One-sided Formula 

• Expand ui+1, ui+2 and ui+3 in Taylor series about ui: 

(9a) ui+1 = u(x+ 1∆x) = u(x) + du/dx (∆x)  + d2u/dx2 (∆x)2/ 2! + ...
(9b) ui+2 = u(x+ 2∆x) = u(x) + du/dx (2∆x)  + d2u/dx2 (2∆x)2/ 2! + ...
(9c) ui+3 = u(x+ 3∆x) = u(x) + du/dx (3∆x)  + d2u/dx2 (3∆x)2/ 2! + ...

• Find { a ui + b (9a) + c(9b) + d (9c) } and rearrange to get
(10) aui + bui+1 + cui+2 + dui+3 = pu +q du/dx (∆x) + r d2u/dx2(∆x2)  

+ s d3u/dx3(∆x3) + t d4u/dx4(∆x4) 

• Compare the coefficients of (8) and (10) to get
a = -11/6 b = 3 c = -3/2 d = 1/3

or
(11) du/dx)i = [-11 ui + 18 ui+1 - 9 ui+2 + 2 ui+3]/ (6∆x) + O(∆x3)



Higher Derivatives 

• Finite difference approximation for second derivative: 

d2u/dx2)i =   [d/dx( du/dx)]i

≈ [ (du/dx)i+1/2 - (du/dx)i-1/2 ] / ∆x 
≈ [ (ui+1 - ui)/ ∆x  - (ui - ui-1)/ ∆x ] / ∆x 

or
(12) d2u/dx2)i  ≈ [ (ui+1 -2 ui + ui-1) ] / ∆x2

• Taylor series evaluation of equation (11) shows that the approximation is 
second order accurate; thus, 

(12a) d2u/dx2)i = [ (ui+1 -2 ui + ui-1) ] / ∆x2 + O(∆x2)

• Note that use of central differences for the second derivative requires 
three points, viz., (i-1), i, (i+1),  for a second order accurate formula



Other Formulas for Higher Derivatives 

• Using forward differencing throughout, one can get the following first 
order accurate formula involving three points for the second derivative: 

d2u/dx2)i =   [d/dx( du/dx)]i ≈ [ (du/dx)i+1- (du/dx)i] / ∆x 
≈ [ (ui+2 - ui+1)/ ∆x  - (ui+1 - ui)/ ∆x ] / ∆x 

or
(13) d2u/dx2)i  ≈ [ (ui+2 -2 ui+1 + ui) ] / ∆x2 + O(∆x)

• A central, second order scheme for the third derivative needs four points: 
(14) d3u/dx3)i = [ (ui+2 -2 ui+1 + 2 ui-1 - ui-2) ] / (2∆x3) + O(∆x2)

• If p = order of derivative, q = order of accuracy and n = no of points, then 
n = p + q -1 for central schemes 
n = p + q for one-sided schemes



Mixed Derivatives 

• Mixed derivatives can occur as a result of coordinate transformation to a 
non-orthogonal system (for example, to take account of non-regular shape 
of the flow domain). 

• Straightforward application of the method for higher derivatives: 

∂2u/∂x∂y)i,j =   [∂/∂x (∂u/ ∂y)]i,j   
≈ [(∂u/∂y)i+1,j - (∂u/∂y)i-1,j] / (2∆x) 

≈ [ (ui+1,j+1 - ui+1,j-1)/ 2∆y  - (ui-1,j+1 - ui-1,j-1)/ 2∆y ] / (2∆x) 
or
(15) ∂2u/∂x∂y)i,j ≈ [(ui+1,j+1 -ui+1,j-1 - ui-1,j+1 + ui-1,j-1)] / (4 ∆x∆y) 

+ O(∆x2, ∆y2 )

• A large variety of schemes possible



Example: 2-D Poisson Equation 

(16) ∂2u/∂x2 + ∂2u/∂y2 = f  0 < x < L and 0 < y < W
with   Dirichlet boundary condtions: u (x,y)  = g(x,y)  on boundary

• Write ∂2u/∂x2)i,j ≈ [(ui+1,j -2ui,j + ui-1,j)] / (∆x2) + O(∆x2)
and ∂2u/∂y2)i,j ≈ [(ui,j+1 -2ui,j + ui,j-1)] / (∆y2) + O(∆y2)
and substitute in (16) to get

(17) [(ui+1,j -2ui,j + ui-1,j)] / (∆x2)  + [(ui,j+1 -2ui,j + ui,j-1)] / (∆y2)
=  fij + O(∆x2, ∆y2 )

• With Dirichlet boundary conditions, equation (17) would be valid for
2 < i < Ni 2 < j < Nj

• Results in (Ni-1) x (Nj-1) algebraic equations to be solved for u(i,j)



Poisson Equation: Other Boundary Conditions 

• Normal gradient specified, e.g, du/dy = c1 for all i at j = Nj
• Values of u(I, Nj) not known and have to be determined
• For these boundary points, 

du/dy ≈ (ui,Nj-1 -ui,Nj)/ ∆y = c1 “first order accurate”
or ui,Nj - ui,Nj-1 = c1* ∆y 
• Equations for the interior points remain the same
• For second order accuracy, one can write 

du/dy ≈ (aui,Nj-2 + bui,Nj-1 + cui,Nj)/ ∆y = c1

• Convective boundary condition: q”w = h*(uinf -uw); h and uinf given
• This can be implemented by noting that q”w = -kdu/dy
• Thus, h*(uinf - ui,Nj) = -k*(aui,Nj-2 + bui,Nj-1 + cui,Nj)/ ∆y 

which gives the necessary algebraic equation for the boundary point.
• (Ni-1) x (Nj) algebraic equations to be solved for u(i,j)



Discretization of Time Domain 

• Consider the unsteady heat conduction problem: ∂T/∂t = ∂2T/∂x2 (18)

• Denote T(x,t )  = T(i ∆x, n ∆t) = Ti
n  = Ti,n

• We seek discretization of eqn. (18) of the form

(19) ∂T/∂t )i,n = ∂2T/∂x2)i,n 

• Evaluate LHS of (19) using forward differencing as
(20) ∂T/∂t )i,n = (Ti,n+1 - Ti,n) / ∆t  + O (∆t) 

• But several options for RHS even if we choose, say, central differencing
for ∂2T/∂x2



Explicit and Implicit Schemes 

• Put ∂2T/∂x2)i,n = (Ti+1,n - 2 Ti,n + Ti-1,n)/ ∆x2 + O(∆x2) (21)

and substitute (20) and (21) in (19) to get 

• Explicit equation for Ti,n+1: 
(Ti,n+1 - Ti,n)/ ∆t = (Ti+1,n - 2 Ti,n + Ti-1,n)/ ∆x2

or Ti,n+1 = Ti,n + ∆t/∆x2 (Ti+1,n - 2 Ti,n + Ti-1,n) + O( ∆t, ∆x2) (22)

• Put ∂2T/∂x2)i,n = (Ti+1,n+1 - 2 Ti,n+1 + Ti-1,n+1)/ ∆x2 + O(∆x2) (23)

and substitute (20) and (21) in (19) to get 

• Implicit equation for Ti,n+1: 
(Ti,n+1 - Ti,n)/ ∆t = (Ti+1,n+1 - 2 Ti,n+1 + Ti-1,n+1)/ ∆x2 or

(1+ 2 ∆t/∆x2) Ti,n+1 = Ti,n + ∆t/∆x2 (Ti+1,n+1+ Ti-1,n+1) + O(∆t, ∆x2) (24)



Other Schemes  

• Put Ti,n = (Ti, n-1 + Ti,n+1)/2  to get 

• the DuFort-Frankel scheme: 
(25) (Ti,n+1 - Ti,n-1)/ (2∆t) = (Ti+1,n - Ti,n+1 +Ti,n-1 + Ti-1,n)/ ∆x2 + O(∆t2, ∆x2)

– Explicit, second order accurate and unconditionally stable

• Evaluate RHS at (n+1/2) as (RHS,n + RHS,n+1)/2 and put in (19) to get 

• the Crank-Nicolson scheme: 
(26) -r Ti-1,n+1 +(2+2r) Ti,n+1 - rTi+1,n+1 = rTi-1,n + (2-2r)Ti,n + rTi+1,n
where r = ∆t/∆x2

– Implicit, second order accurate and unconditionally stable



Explicit vs Implicit Methods

• Explicit methods are simple to program and allow marching forward in 
time point by point from given initial condition

• Implicit methods are more difficult to program and require 
simultaneous solution of algebraic equations at each time step to get 
the solution

• Explicit methods are generally less stable than implicit methods and 
may give unphysical solutions if the marching time step is too large

• Too-large a time step, which is possible with implicit methods, may 
result in less accuracy and instability in non-linear problems



Non-uniform Meshes

• The methods discussed above can be extended to non-uniform meshes 
but may have to be done with care so as not to lose an order of 
accuracy :

• du/dx)I = {ui+1 (∆xi-1)2 - ui-1(∆xi)2 + ui[(∆xi-1)2 - (∆xi)2]}
/ {(∆xi-1) (∆xi) (∆xi-1 + ∆xi)}  + O{(∆xi)2}

where ∆xi = xi+1 - xi etc

• Highly non-uniform and distorted meshes should be avoided where 
possible



Closure

• Finite difference techniques can be used to systematically develop 
approximate formula for derivatives of a function on a structured mesh

• Formulas of desired accuracy level can be obtained for a derivative 
provided sufficient number of points are included in the formula

• Discretized equations of  partial differential equations can be obtained 
by replacing the derivatives with finite difference formulas

• The resulting equations are coupled of algebraic equations which may 
be non-linear for non-linear equations and require simultaneous 
solution

• The issue of stability is brought into play for time-dependent problems



Thank you for your attention.

E-mail me at

sjayanti@iitm.ac.in

in case of queries


