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Basics of Finite Difference Methods

FD methods are quite old and somewhat dated for CFD problems but
serve as a point of departure for CFD studies

The principal idea of CFD methods is to replace a governing partial
differential equation by an equivalent and approximate set of algebraic
equations

Finite difference techniques are one of several options for this
discretization of the governing equations

In finite difference methods, each derivative of the pde is replaced by
an equivalent finite difference approximation



Basics of Finite Difference Methods

» The basis of a finite difference method is the Taylor series expansion of a
function.

« Consider a continuous function f(x). Its value at neighbouring points can
be expressed in terms of a Taylor series as

(1) f(x+ Ax) = f(x) + df/dx (Ax) + d2f/dx? (Ax?)/ 2! + .. + d"f/dx" (Ax")/n! + ..
* The above series converges if Ax is small and f(x) is differentiable

* [For a converging series, successive terms are progressively smaller



FD Approximation for a First Derivative

« The terms in the Taylor series expansion can be rearranged to give

df/dx = [f(x+ AX) - f(X)] / Ax - d?fldx?2 (Ax)/2! - ...-d"/dx" (AX"Dy/n! - ...
Or
(2) df/dx = [f(x+ AX) - f(xX)] / AX + O(AX)

o Here O(AX) implies that the leading term in the neglected terms of the
order of Ax, 1.e., the error in the approximation reduces by a factor of 2 if
AX 1s halved.

e Equation (2) is therefore a first order-accurate approximation for the first
derivative.



Other Approximations for a First Derivative

e Other approximations are also possible. Writing the Taylor series
expansion for f(x- Ax), we have

() f(x-Ax) = f(x) - df/dx (Ax) + d?f/dx? (Ax?)/ 2! - .. + d"f/dx" (Ax")/n! +
« Equation (3) can be rearranged to give another first order approximation :

(4) df/dx =~ [f(x) - f(x-AX)] / AX + O(AX)

« Subtracting (3) from (1) gives a second order approximation for df/dx :

(5) df/dx = [f(x+ AX) - f(x-AX)] / (2AX) + O(AX?)



FD Approximations on a Uniform Mesh

e Consider a uniform mesh with a spacing of Ax over an interval [0, L]
e Denoting the mesh index by I, we can write
f; = f(x;) = f(i Ax) and fi+1 =f[(i+1) AX] and so on

e Then
2) = df/ldx~
(3) = df/ldx=~
5) = df/ldx =~
are the

f(x+ AX) - f(X)] / AX = (fi+1 - fi)/Ax + O(AX)
f(X) - f(x- AX) ]/ AX = (fi- fi-1)/Ax + O(AX)

f(x+ AX) - f(x-AX)] / (2AX) = (fi+1- fi-1)/(2AX) + O(AX?)
forward “one-sided”

backward “one-sided”

central “symmetric”

differencing formulas, respectively, for df/dx at x or node |
e One-sided formulas are necessary at ends of domains



Higher Order Accuracy

« Higher order of accuracy of approximation can be obtained by including
more number of adjacent points

e Let us seek a third-order, one-sided approximation for u(x). This requires
four points and will be of the form

6) du/dx)i = [aui + bui+1 + cui+2 + dui+3]/ Ax + O(AX®)

e This is equivalent to writing (6) as

(7) du/dx)i = [aui + bui+1 + cui+2 + dui+3]/ Ax + (0) d?u/dx?(Ax)
+ (0)d3u/dx3(Ax?) + (e) d*u/dx*(Ax3)

or

(8) aui + bui+1 + cui+2 + dui+3 = + du/dx (AX) + (0) d?u/dx?(Ax?)
+ (0)d3u/dx3(AX3) - (e) d*u/dx*(Ax*)

« Howto find a, b, c and d?



Third-Order, One-sided Formula

e Expand ui+1, ui+2 and ui+3 in Taylor series about ui:

(9a) ui+1l = u(x+ 1Ax) = u(x) + du/dx (Ax) + d2u/dx? (Ax)%/ 2! + ...
(9b) ui+2 = u(x+ 2Ax) = u(x) + du/dx (2Ax) + d?u/dx? (2Ax)%/ 2! + ...
(9¢) ui+3 = u(x+ 3Ax) = u(x) + du/dx (3Ax) + d?u/dx? (3Ax)?/ 2! + ...

 Find{aui+b(9)+c(9b)+d(9c) }and rearrange to get

(10) aui + bui+1 + cui+2 + dui+3 = pu +q du/dx (Ax) + r d?u/dx?(Ax?)
+ s d3u/dx3(Ax3) + t d*u/dx4(Ax?)

o Compare the coefficients of (8) and (10) to get
a=-11/6 b=3 ¢=-3/2 d=1/3
or
(11) du/dx)i = [-11 ui + 18 ui+1 - 9 ui+2 + 2 ui+3]/ (6AX) + O(AX®)



Higher Derivatives

 Finite difference approximation for second derivative:

d2u/dx?).

[d/dx( du/dx)];
[ (du/dX);,q5 - (du/dX); o ]/ AX
[ (Ui+1 - ui)/ AX - (ui - ui-1)/ Ax ]/ Ax

R

u

or
(12) d?u/dx?);

Q

[ (ui+1 -2 ui + ui-1) ]/ Ax?

» Taylor series evaluation of equation (11) shows that the approximation is
second order accurate; thus,

(12a) d2u/dx?); = [ (ui+l -2 ui + ui-1) ]/ Ax? + O(Ax?)

« Note that use of central differences for the second derivative requires
three points, viz., (i-1), 1, (i+1), for a second order accurate formula



Other Formulas for Higher Derivatives

» Using forward differencing throughout, one can get the following first
order accurate formula involving three points for the second derivative:

d?u/dx?); = [d/dx( du/dx)]; = [ (du/dx);,,- (du/dx);] / Ax
~ [ (ui+2 - ui+1)/ Ax - (ui+1 - ui)/ AX ]/ Ax
or
(13) d2u/dx?), = [ (ui+2 -2 ui+l + ui) ] / Ax? + O(AX)

« A central, second order scheme for the third derivative needs four points:
(14) d3u/dx3), = [ (ui+2 -2 ui+l + 2 ui-1 - ui-2) ] / (2Ax3) + O(AX?)

e If p = order of derivative, q = order of accuracy and n = no of points, then
n=p+q-1 for central schemes

n=p+q for one-sided schemes



Mixed Derivatives

« Mixed derivatives can occur as a result of coordinate transformation to a
non-orthogonal system (for example, to take account of non-regular shape
of the flow domain).

« Straightforward application of the method for higher derivatives:

o2uloxoy)i,j = [olox (oul oy)]i,j
~ [(ouloy)i+1,) - (ouloy)i-1,j] | (2AX)
~ [ (ui+1,j+1 - ui+1,j-1)/ 2Ay - (ui-1,j+1 - ui-1,j-1)/ 2Ay ]/ (2AX)
or
(15) o2u/oxoy)i,j = [(ui+l,j+1 -ui+l,j-1 - ui-1,j+1 + ui-1,j-1)] / (4 AXAy)
+ O(AX?, Ay?)

e A large variety of schemes possible



Example: 2-D Poisson Equation
(16)  C%ulox? + duloy? = f O<x<LandO<y<W

with  Dirichlet boundary condtions: u (X,y) = g(X,y) on boundary

e Write 02u/ox?)i,j ~ [(ui+l,] -2ui,j + ui-1,))]/ (Ax?) + O(AX?)
and o2uloydi,j ~ [(ui,j+1 -2ui,j + ui,j-1)] / (Ay?) + O(Ay?)
and substitute in (16) to get

(17) [(ui+1,j-2ui,j + ui-1,j)] / (Ax?) + [(ui,j+1 -2ui,j + ui,j-1)] / (Ay?)
= fij + O(AX?, Ay?)

« With Dirichlet boundary conditions, equation (17) would be valid for
2<i<Ni 2<]J<Nj

 Results in (Ni-1) x (Nj-1) algebraic equations to be solved for u(i,j)



Poisson Equation: Other Boundary Conditions

* Normal gradient specified, e.g, du/dy = c1 for all i at j = Nj
 VValues of u(l, Nj) not known and have to be determined
* For these boundary points,

du/dy ~ (ui,Nj-1 -ui,Nj)/ Ay =cl *“first order accurate”
or ui,Nj - ui,Nj-1 = c1* Ay
 Equations for the interior points remain the same
 For second order accuracy, one can write

du/dy =~ (aui,Nj-2 + bui,Nj-1 + cui,Nj)/ Ay =cl

 Convective boundary condition: g”w = h*(uinf -uw); h and uinf given
 This can be implemented by noting that q”w = -kdu/dy
e Thus, h*(uinf - ui,Nj) = -k*(aui,Nj-2 + bui,Nj-1 + cui,Nj)/ Ay

which gives the necessary algebraic equation for the boundary point.
* (Ni-1) x (Nj) algebraic equations to be solved for u(i,j)



Discretization of Time Domain

e Consider the unsteady heat conduction problem:  o0T/ot = 6?T/ox? (18)
» Denote T(x,t) =T(i AX,n At) =T;" = Ti,n

» We seek discretization of egn. (18) of the form

(19) oT/ot)i,n = 0°T/ox?)i,n

« Evaluate LHS of (19) using forward differencing as
(20) oT/ot)i,n = (Ti,n+1 - Ti,n) / At + O (At)

« But several options for RHS even if we choose, say, central differencing
for 0°T/ox?



Explicit and Implicit Schemes

e Put  0%T/ox?)i,n = (Ti+l,n -2 Ti,n + Ti-1,n)/ Ax? + O(AX?) (21)
and substitute (20) and (21) in (19) to get

 Explicit equation for Ti,n+1:
(Ti,n+1 - Ti,n)/ At = (Ti+1,n - 2 Ti,n + Ti-1,n)/ AX?
or Ti,n+1 =Ti,n + A/AX? (Ti+1,n - 2 Ti,n + Ti-1,n) + O(At, AX2)  (22)

e Put 0&°T/ox?)i,n = (Ti+1,n+1 -2 Ti,n+1 + Ti-1,n+1)/ Ax? + O(AX?) (23)
and substitute (20) and (21) in (19) to get

e Implicit equation for Ti,n+1:
(Ti,n+1 - Ti,n)/ At = (Ti+1,n+1 - 2 Ti,n+1 + Ti-1,n+1)/ AX*> or
(1+ 2 At/AX?) Ti,n+1 = Ti,n + AUAX? (Ti+1,n+1+ Ti-1,n+1) + O(At, Ax?) (24)



Other Schemes

e Put Ti,n =(Ti, n-1 + Ti,n+1)/2 to get

e the DuFort-Frankel scheme:
(25) (Ti,n+1 - Ti,n-1)/ (2At) = (Ti+1,n - Ti,n+1 +Ti,n-1 + Ti-1,n)/ Ax? + O(At?, Ax?)

— Explicit, second order accurate and unconditionally stable
» Evaluate RHS at (n+1/2) as (RHS,n + RHS,n+1)/2 and put in (19) to get

e the Crank-Nicolson scheme:

(26) -r Ti-1,n+1 +(2+2r) Ti,n+1 - rTi+1,n+1 =rTi-1,n + (2-2r)Ti,n + rTi+1,n
where r = At/Ax?
— Implicit, second order accurate and unconditionally stable



Explicit vs Implicit Methods

Explicit methods are simple to program and allow marching forward in
time point by point from given initial condition

Implicit methods are more difficult to program and require
simultaneous solution of algebraic equations at each time step to get
the solution

Explicit methods are generally less stable than implicit methods and
may give unphysical solutions if the marching time step is too large

Too-large a time step, which is possible with implicit methods, may
result in less accuracy and instability in non-linear problems



Non-uniform Meshes

The methods discussed above can be extended to non-uniform meshes
but may have to be done with care so as not to lose an order of
accuracy :

du/dx)l = {ui+1 (Axi-1)? - ui-1(Axi)? + ui[(AXxi-1)? - (AXi)?]}
[ {(Axi-1) (AXi) (Axi-1 + AXi)} + O{(Axi)*}

where AXi = Xi+1 - Xi etc

Highly non-uniform and distorted meshes should be avoided where
possible



Closure

Finite difference techniques can be used to systematically develop
approximate formula for derivatives of a function on a structured mesh

Formulas of desired accuracy level can be obtained for a derivative
provided sufficient number of points are included in the formula

Discretized equations of partial differential equations can be obtained
by replacing the derivatives with finite difference formulas

The resulting equations are coupled of algebraic equations which may
be non-linear for non-linear equations and require simultaneous
solution

The issue of stability is brought into play for time-dependent problems



Thank you for your attention.

E-mail me at

sjayanti@iitm.ac.in

In case of queries



