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TYPES OF MODELS

Models are used not only in the natural sciences
(such as physics, biology, life sciences, earth
science, meteorology) and engineering-
architecture disciplines, but also in the social
sciences (such as economics, psychology,
sociology and political science).

Here is a list:

 Physical Models

 Analogic Models

 Provisional Theories
(e.g., molecular and atomic models)

 Maps and Drawings
(e.g., PI&D, geographycal maps, etc.)

 Mathematical and symbolic models
 § 1.4 in Himmelblau D.M. e Bischoff K.B., “Process Analysis and
Simulation”, Wiley & Sons Inc., 1967
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Why modeling?
Some answers …

3

Models are usually more accessible to 
study than the actual system modeled. 
• Changes in the structure of a model are easier to 

implement, and changes in the behavior of a model 
are easier to isolate, understand, and communicate 
to others. 

• A model can be used to achieve insight when direct 
observation/experimentation with the actual system 
is too dangerous, disruptive, or demanding. 

• A model can be used to answer questions about a 
system that has not yet been observed or built, or 
even one that cannot be observed or built with 
present technologies.

MATHEMATICAL MODELING

A mathematical model is a description of a system
using mathematical concepts and language.

The process of developing a mathematical model is
termed mathematical modeling.

Mathematical models are used not only in the
NATURAL SCIENCES (such as physics, biology, earth
science, meteorology) and ENGINEERING
DISCIPLINES (e.g. computer science, artificial
intelligence), but also in the SOCIAL SCIENCES (such
as economics, psychology, sociology and political
science);

physicists, engineers, statisticians, operations research
analysts and economists use mathematical models
most extensively.

A model may help to explain a system and to study the
effects of different components, and to make
predictions about behavior.

4
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MATHEMATICAL MODELING
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General statements

A mathematical model usually describes a
system by a set of variables and a set of
equations that establish relationships between
the variables.
Relationships can be described by operators,
such as algebraic operators, functions,
differential operators, etc.
Anonymous

A mathematical model is a representation, 
in mathematical terms, of certain aspects of 
a non-mathematical system 
Aris, 1999

A model may be prescriptive or illustrative, 
but, above all, it must be useful !
Wilson, 1991

Why Math Modeling ?

• Is it:
 to design a controller?
 to analyze the performance of the 

process?
 to understand the process/system 

better?
 to simplify the complexity of a 

system?

Introduction to Process Control Romagnoli & Palazoglu

6
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Mathematical model 
development strategy

• The development of a model and its 
structure are intimately related to the 
goals of modeling.  

• In other words, the complexity of a 
model should be commensurate
with the ultimate application in which 
it will be used. 

• In model development, always start 
by trying the simplest model and 
then only add complexity to the 
extent needed

Introduction to Process Control Romagnoli & Palazoglu7

Keep things as simple as possible, 
but not simpler
A. Einstein

Mathematical model development:
Complexity vs. Simplicity

Introduction to Process Control Romagnoli & Palazoglu8

 Ratio of costs to benefits
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Mathematical model 
development strategy:

cycling

9

 “First principle Models”
 Basic models
 Models involving transport phenomena
 Models based on the “population 

balance approach”
 Empirical or “fitting” models
 Dynamic models

• dynamic models with “input-
output representation”

• state-space dynamic models
• black box dynamic models

 Time Series
 Statistical models

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification
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10 rielaborated from § 1.4 in Himmelblau D.M. e Bischoff 

K.B., “Process Analysis and Simulation”, Wiley & Sons Inc., 1967
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 First principles Models

or
Fundamental Models
( Palazoglu & Romagnoli, 2005)
or
Mechanistic or White Box Models
( Roffel & Betlem, 2006)
 Modelli basati sui “fenomeni di trasporto”

 Modelli basati sul “bilancio di popolazione”

 Modelli empirici o di “fitting”

 Modelli dinamici 
• Modelli dinamici “con rappresentazione 

ingresso-uscita”

• Modelli dinamici “con rappresentazione nello 
spazio di stato”

• Modelli dinamici a scatola nera (black box)

 Serie temporali

 Modelli statistici

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification

11

FUNDAMENTAL LAW

GENERAL CONSERVATION PRINCIPLE

[IN] – [OUT] + [GEN] = [ACC]
NB: GEN > 0 formation

GEN < 0 disappearance

12

SIMPLER CASES
For a chemical element:

IN - OUT = ACC

At steady-state:

IN - OUT + GEN = 0

At steady-state and without chemical/biochemical 
reactions:

IN - OUT = 0
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First principles models
(including population balance models)

NB:

The description of such a system and the
development of such a model require the
concept of:

• control volume
or

• system boundary

13 14

First principles mathematical models.
Malthusian Growth Model

An Early and Very Famous Population Model

In 1798 the Englishman Thomas R. Malthus posited a
mathematical model of population growth. He model, though
simple, has become a basis for most future modeling of
biological populations. His essay, "An Essay on the Principle of
Population," contains an excellent discussion of the caveats of
mathematical modeling and should be required reading for all
serious students of the discipline. Malthus's observation was
that, unchecked by environmental or social constraints, it
appeared that human populations doubled every twenty-five
years, regardless of the initial population size. Said another
way, he posited that populations increased by a fixed proportion
over a given period of time and that, absent constraints, this
proportion was not affected by the size of the population.

By way of example, according to Malthus, if a population of 100
individuals increased to a population 135 individuals over the
course of, say, five years, then a population of 1000 individuals
would increase to 1350 individuals over the same period of
time.

Malthus's model is an example of a model with one variable
and one parameter. A variable is the quantity we are interested
in observing. They usually change over time. Parameters are
quantities which are known to the modeler before the model is
constructed. Often they are constants, although it is possible for
a parameter to change over time. In the Malthusian model the
variable is the population and the parameter is the population
growth rate.
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First principles mathematical models.
Malthusian Growth Model

PARAMETERSSTATE VARIABLES

CLASSIFICATION

DYNAMIC AUTONOMOUS MATHEMATICAL MODEL

made by 1 ODE (Order =1) ,

LINEAR, CONSTANT COEFFICIENT MODEL

GENERAL CONSERVATION LAW
applied to No. of individuals in a “closed
system”: ACC = GEN

GEN = birth - death

INITIAL CONDITION:

16

First principles mathematical models.
Logistic Model

GENERAL CONSERVATION LAW
applied to No. of individuals in a “closed
system”: ACC = GEN

GEN = birth - death

PARAMETERSSTATE VARIABLES

INITIAL CONDITION:

CLASSIFICATION

DYNAMIC AUTONOMOUS MATHEMATICAL MODEL

made by 1 ODE (Order =1) ,

NON LINEAR, CONSTANT COEFFICIENT MODEL
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First principles mathematical models.
The prey-predator model 

BIBLIO REF.

Lotka A.J. (1925) Elements of 
Physical Biology. Baltimore: 
Williams & Wilkens.

Volterra V. (1926) "Variazioni e 
fluttuazioni del numero d’individui in 
specie animali conviventi", 
Mem.R.Accad.Naz.dei Lincei, 
Ser.VI, 2
1st  president of National Research 
Council (CNR) of Italy

The idea is that, if left to themselves with an infinite
food supply, the rabbits or zebras would live happily
and experience exponential population growth.

On the other hand, if the foxes or lions were left with
no prey to eat, they would die faster than they could
reproduce, and would experience exponential
population decline.

First principles mathematical 
models.

The prey-predator model 

VECTOR OF
PARAMETERS

STATE VARIABLE
VECTOR

INITIAL CONDITION

interaction 
term“maltusian” term

18

CLASSIFICATION
DYNAMIC AUTONOMOUS MATHEMATICAL MODEL
made by 2 ODEs (Order = 2) ,
NON LINEAR, CONSTANT COEFFICIENT MODEL

GENERAL CONSERVATION LAW
applied to No. of individuals in a “closed
system”: ACC = GEN

GEN = birth - death
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First principles mathematical models.
The prey-predator model 

with 2 parameters

INITIAL CONDITION

STEADY-STATE or EQUILIBRIUM POINTS

carrying 
capacity

 Cleve Moler, Experiments with MATLAB, 2009

http://www.mathworks.com/moler/exm/chapters.html

19 20

First principles mathematical models.
The prey-predator model 

http://www.scholarpedia.org/article/Predator-prey_model

• Steady-state solutions

• Periodic solutions Time profile
or 

Time series
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First principles mathematical models.
The prey-predator model 

with 2 parameters
MatLab SOLUTION (1)

function yp = lotka(t,y)

%LOTKA Lotka-Volterra predator-prey model.

% Copyright 1984-2002 The MathWorks, Inc.

% Revision: 5.9 by Michele MICCIO: May 8, 2008

% suggested parameters in the original file by
MatLab:

% ALPHA=0.01

% BETA=0.02

yp = diag([1 - ALPHA*y(2), -1 + BETA*y(1)])*y;

 run file LOTKADEMO.M

 calling function LOTKA.M

21

First principles mathematical models.
The prey-predator model 

with 2 parameters
MatLab SOLUTION (2)

function predprey(action)
% PREDPREY Predator-prey GUI.
% Drag the red dot to change equilibrium point.
% Drag the blue-green dot to change the initial
conditions.

% Default parameters.

mu = [300 200]'; % Equilibrium.
eta = [400 100]'; % Initial conditions.

% Predator-prey ode

function ydot = ppode(t,y);
ydot = [(1-y(2)/mu(2))*y(1);

-(1-y(1)/mu(1))*y(2)];
end

 run file PREYPRED.M

 Use of graphycal interface

22
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First principles mathematical models.
The prey-predator model 

with 2 parameters

predprey.m

23

Phase
portrait

Time profile
or 

Time series

VARIABLES
Definition

A variable represents a relevant
property of the system, being modeled.

A variable can be, for example, physical
or chemical quantities, measured system
outputs often in the form of signals, timing
data, counters, and event occurrence
(yes/no).

The values of the variables can be
practically anything; real or integer
numbers, boolean values or even strings.

Mathematically, a variable can be an
unknown appearing in equations and
disequations or a function of one or more
independent variables.

24
 The actual model is the set of functions that 
describe the relations between the different 
variables.
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VARIABLES
Examples

25

The most common variables in chemical and process
engineering are:
1. composition/concentration
2. temperature
3. pressure
4. rate
5. repetition variable
Variables 1 to 3 are referred to as “intensive” as they
do not depend on mass or size of the system being
considered.
A rate can be related to matter (mass, mole, volume) or
energy (heat) or momentum (force).
Rate is an “extensive” variable.
A repetition variable is used to account for realization
of a given operation through a number of stages or
units, being all equal in their working principle.
A variable can be “continuous” or “discrete”.
Generally, each variable is defined in a given interval.

NV = No. of variables in the model being considered.

COMPOSITION VARIABLES

26
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VARIABLES
Classification

27

Specified variables
or Specifications
They are those variables that represent physical-
chemical properties or that are fixed by designers,
regulations, environmental considerations, etc. prior to
the design phase.

Design variables
They are variables selected by designers.

Generally, their values are chosen in order to satisfy an
optimum condition for a given “objective function”.

Unknown or State variables
They are those variables that are calculated by the
available system of equations once values for Design
Variables have been fixed.

 “First principle Models”
 Basic models
 Models involving trasport 

phenomena
 Models based on the “population 

balance approach”
 Empirical or “fitting” models
 Dynamic models

• dynamic models with “input-output 
rappresentation”

• state-space dynamic models
• black box dynamic models

 Time Series
 Statistical models

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification

28 rielaborated from § 1.4 in Himmelblau D.M. e Bischoff 
K.B., “Process Analysis and Simulation”, Wiley & Sons Inc., 1967
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Transport Phenomena

Examples:

• Newton law of viscosity

• Fourier law of heat conduction

• 1st Fick law of diffusion

29

General Law

Transport and Kinetic Rate 
Equations

30

Momentum, Heat and Mass transfers

Heat Mass Momentum

Flux q nA τxy
Diffusion transfer (microscopic scale)

Law Fourier’s law Fick’s law Newton’s law

Driving force
(gradient)

dT/dx dCA/dx dvy/dx

Key 
parameter
(diffusion
coefficient)

kT 
(Thermal 
conductivity)

DAB

(Diffusivity)
µ 
(Viscosity)

Convection transfer (macroscopic scale)

Driving force ∆T ∆CA ∆P
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 “First principle Models”
 Basic models
 Models involving trasport 

phenomena
 Models based on the “population 

balance approach”
 Empirical or “fitting” models
 Dynamic models

• dynamic models with “input-output 
rappresentation”

• state-space dynamic models
• black box dynamic models

 Time Series
 Statistical models

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification

31
 rielaborated from § 1.4 in Himmelblau D.M. e Bischoff 
K.B., “Process Analysis and Simulation”, Wiley & Sons Inc., 1967

Mathematical Models
2nd classification

 Structured or Theoretical or White Box 
Models

 Unstructured or Empirical or Black 
Box Models

 Hybrid or Gray Box Models

32

(on the base of an approach typical of 
process engineering)

 Ogunnaike B.A. and Ray W.H., “Process
Dynamics, Modeling and Control”, Oxford Univ.
Press, 1994
 Romagnoli & Palazoglu, "Introduction to
Process Control"
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Structured models

33

Characteristics:

Using mathematical equations describe the system

a) Conservation equations e.g. total mass, mass of
individual chemical species, total energy, momentum
and number of particles.

b) Rate equations e.g. transport rate and reaction rate
equation.

c) Equilibrium equation e.g. reaction and phase
equilibrium.

d) Equations of state e.g. ideal gas law

e) Other constitutive relationships e.g. Control valve
flow equation, PID control law

 Advantages:

Being able of understanding the process in a fundamental
way from this modeling

 Disadvantages:

It requires a good and reliable understanding of the physical
and chemical phenomena that underlie the process

Accuracy of model depends on the assumptions and
mathematical ability of the person constructing the
model.

Unstructured models

34

Characteristic: constructing (fitting) a mathematical
relationship among the variables that can explain the
observed data.
a) Vary input variables and then measure the response of the
output variables.
b) Enough experiments are required (a historical database of
measurements or observations is needed)
c) Such models that rely solely on empirical information are
considered as black-box models.

Example: A black-box model simulating the internal
combustion engine operation and implemented into the
control box of a modern car

 Advantages:

a) Good indicator to actual process (no assumption required).
b) Just focus in on the range of conditions under the
operating process.

Disadvantages:

a) It requires an actual operating process and may become
very time-consuming and costly
b) It doesn’t allow extrapolation, generally
c) It never gives the engineer a fundamental understanding
of the process.

black box
Model

i y
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Structured and unStructured Models:
Comparison

Structured Models
theory-rich and data-poor

Unstructured Models
data-rich and theory-poor

36

“Hybrid” Models

• Empirical Model II (Gray-Box) is 
developed by incorporating empirical 
knowledge into the fundamental 
understanding of the process.  

Such models blending fundamental and 
empirical knowledge are referred to as 

gray-box models.

Example
An example can be the use of mass and 
energy balances to develop a reactor model 
and the rate of the reaction will be based on 
expressions obtained from laboratory 
experiments. 

Introduction to Process Control Romagnoli & Palazoglu
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Mathematical Models
3rd classification

1.deterministic vs stocastic
2. lumped parameters

vs distributed parameters
3.one dimension vs several dimensions
4. linear vs non linear
5.steady state vs time dependent
6. time-invariant vs    time – varying
7.autonomous vs    non – autonomous

(on the base of 
mathematical features of equations and variables, 

also affecting type or easiness of solution)

 Ch.3 of Himmelblau D.M. and Bischoff K.B., “Process 
Analysis and Simulation”, Wiley, 1967

First principles mathematical models. 
EXAMPLE 

of salami drying

1st approach
lumped parameters

r [mm]

X [ kg (H2O/ kg (S.S.) ]

2nd approach
distributed parameters

X [=] mass of H2O (liq.) / mass of dry solids
38
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SIMPLIFIED MODEL:
Assumptions

• Sausage is considered as a “Lumped
body”:

• Uniform moisture concentration

• Uniform temperature

• Cylindrical shape

• All sausages have equal characteristics
during drying.

• Weight loss is considered as the
consequence of H2O evaporation only.

• Heat generation by fermentation is
negligible.

• Sausage size and shape remain
unchanged during ripening.

• Heat transfer to sausage is under steady-
state.

39

Mass balance equation

for a single sausage:

mds is mass of dry solid in kg

A is the sausage outer surface in m²

X is the moisture content of the sausage in kg (H2O)/kg (dry
solid)

 is a mass transfer coefficient in kg/m2s

aw is the water activity corresponding to the equilibrium
conditions with a humid solid

RH is the relative humidity of air

Mass transfer is considered as the result of a H2O partial
pressure difference between the outer surface of the
sausage and air.

The desorption curve

The Oswin law is used:

SIMPLIFIED MODEL:
Equations

40
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Heat balance equation

for a single sausage:

h is the convective heat transfer coefficient in kW/m2K

Ta is air temperature in K

T is sausage temperature in K at time t

Hvap is H2O latent heat of vaporization at temperature T in kJ/kg

NB:

It is an Algebraic eq.

SIMPLIFIED MODEL:
Equations

41

Single sausage evaporation rate

The quantity of water which evaporates from the outer
surface of a single sausage is given by:

Weight loss

SIMPLIFIED MODEL:
Equations

42
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• 4th order Runge-Kutta Method to solve the
differential equation

• Trapezoidal rule to solve the following integral for
weight loss

SIMPLIFIED MODEL:
Numerical resolution

43

Moisture content versus drying time

“Turista Buonpiemonte”

RH=0.8

Ta=20°C

va=0.6 m/s

SIMPLIFIED MODEL:
results

44
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Salami temperature versus drying time

“Turista Buonpiemonte”

RH=0.8

Ta=20°C

va=0.6 m/s

SIMPLIFIED MODEL:
results

45

Drying rate versus drying time

“Turista Buonpiemonte”

RH=0.8

Ta=20°C

va=0.6 m/s

SIMPLIFIED MODEL:
results

46
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First principles mathematical models. 
EXAMPLE 

of salami drying

1st approach
lumped parameters

r [mm]

X [ kg (H2O/ kg (S.S.) ]

2nd approach
distributed parameters

X [=] mass of H2O (liq.) / mass of dry solids
47

First principles mathematical models. 
EXAMPLE 

of salami drying
Distributed parameters approach

Water mass balance in a cylindrical shell

[IN] – [OUT] + [GEN] = [ACC]

where:
 D(X,T) is the mass diffusion coefficient
depending on sausage moisture content and on
sausage temperature (m2/s)
 X is the moisture content on a dry basis (kg
water/kg dry mass) 48
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First principles mathematical models. 
EXAMPLE 

of salami drying
Water mass balance, 
with the corresponding initial and 
boundary conditions 

where:
 D(X,T) is the mass diffusion coefficient depending on
sausage moisture content and on sausage temperature (m2/s)
 ds is the dry mass density (kg/m3)
 X is the moisture content on a dry basis (kg water/kg dry
mass)

49

0 R

First principles mathematical models. 
EXAMPLE 

of salami drying
Energy balance, 
with the corresponding initial condition 

where:

 NR is the molar moisture flux at the sausage surface
[mol/(m2 s)]
 H(T) is the latent heat of water evaporation
 X is the moisture content on a dry basis (kg
water/kg dry mass)

50

lumped parameters Eq.
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Mathematical Models
3rd classification

1.deterministic vs stocastic
2. lumped parameters vs distributed parameters
3.one dimension vs several dimensions

 Ch.3 of Himmelblau D.M. and Bischoff K.B., “Process
Analysis and Simulation”, Wiley, 1967

on the base of 
• mathematical features of equations and variables, 
• also affecting type or easiness of solution

4. linear vs non linear
5. steady state vs time dependent
6. time-invariant vs time – varying
7. autonomous vs non–autonomous

Mathematical Models
3rd classification

52

Several levels are possible:

• Easy vs. difficult (subjective)

• Constant coefficients vs. variable coefficients

• Stiff system vs. non-stiff

• Linear vs. non-linear system (algebraic and
differential).

• Homogeneous vs. Inhomogeneous

• Number of variables (e.g. binary and multicomponent
systems)

• Order of differential equations (operators)

• Ordinary differential equations, partial differential
equations, differential-algebraic equations,
integrodifferential equations etc.

• Hyperbolic, parabolic and elliptic PDE

• Initial vs. boundary value problem

Adapted from:
TEKNILLINEN KORKEAKOULU
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Mathematical Models
3rd classification

53

Easy vs. difficult:
If this is estimated based on
required time to solve the model
with certain computational
capacities, then this is actually a
physical classification

Variable vs. constant coefficients:

Mathematical Models
3rd classification

54

Stiff vs. non-stiff
– Formally, based on the ratio of
eigenvalues

– In practice, if there are
simultaneously very fast phenomena
dictating step sizes, and very slow
phenomena dictating simulation
time, system is stiff.

Linear vs. non-linear
In principle, linear systems are easy.
Natural systems are rarely linear, but
often numerical solution is based on
(local) linearizations
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Linear Operator:
Definition and first consequences
Formally, if V and W are vector spaces over the same
ground field K, we say that f : V → W is a linear
transformation if for any two vectors x and y in V and any
scalar a in K, we have

(additivity)

(homogeneity).

This is equivalent to saying that f "preserves linear
combinations", i.e., for any vectors x1, ..., xm and scalars a1,
..., am, we have (superposition)

1st example (linear)
f : w = a x

2nd example (non linear)
f : z = a2 b x y1/2

with a, b scalar constants 55

Linear Operator:
Definition and first consequences

3rd example (non linear)
f : y = mx + p

with m, p scalar constants

56

NB:
It does not obey the principle of
superposition
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Mathematical Models
3rd classification

57

Homogeneous vs. inhomogeneous
If f(x)= nf(x) for every , then f(x)
is homogeneous to n:th degree.

Number of variables
• One-component system

• Two-component system

• Multi-component system

More components, more degrees of
freedom.

Often one degree of freedom leads to
scalar equations, more degrees to
matrices.

Mathematical Models
3rd classification

58

Order of differential equation
It is defined as the order of the
highest derivative in the
differenzial eq.
Ex.: n-th order ODE:

Can be linear or non-linear, depending
on parameters a and function f.

If parameters a depend on x only (not
on y), and function f is at most first
order with respect to y, then the
equation is linear
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Mathematical Models
3rd classification

59

Ordinary vs. partial differential 
equations
ordinary: variables are functions 
of only one independent variable 

Ex.: Variable c is time invariant:   d

partial: functions of several 
independent variables

Ex.:Variable c depends on time and 
on position

Mathematical Models
3rd classification

60

Differential-algebraic equations
(DAE)
In addition to the differential
equations there are algebraic
constraints.

Ex.:

for variables x there are both 
differential and algebraic

equations
for variables y there are only 

algebraic equations
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Mathematical Models
3rd classification

61

Integro-differential equations
Involve both derivatives and
integrals of the unknown
variable.
Ex.:

Distributed systems: x is a density
distribution with respect to s, and this
distribution depends on t.
K is sometimes called a Kernel
function

A reasonably general form:

Mathematical Models
3rd classification

62

Initial vs. boundary value problems

Initial value problems usually easier: start
from the initial values and ”march” forward
in position or time.
Ex.:

the lumped parameters salami drying model

Boundary value problems are encountered
usually in partial differential equations.
Ex.:

the distributed parameters salami drying model
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Linear-Lumped-Deterministic 
Model

 Introduction to Process Control Romagnoli & Palazoglu

“The theory of control is well developed for 
linear, deterministic, lumped-parameter 

models.”

Nonlinear

Distributed

Stochastic

Linear

Lumped
Deterministic

Simple!! But not
necessarily the best…

63

64

Mathematical Models
3rd classification

 Ch.3 of Himmelblau D.M. and Bischoff K.B., “Process
Analysis and Simulation”, Wiley, 1967

on the base of 
• mathematical features of equations and variables, 
• also affecting type or easiness of solution

1. deterministic vs stocastic
2. lumped parameters vs distributed parameters
3. one dimension vs several dimensions
4. linear vs non linear
5. steady state vs time dependent
6. time-invariant vs time – varying
7. autonomous vs non – autonomous

Dynamical models
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 Modelli a “principi primi” (“First principle
Models”)
 Modelli basati sui “fenomeni di trasporto”

 Modelli basati sul “bilancio di
popolazione”

 Empirical or “fitting” models

 Modelli dinamici
• Modelli dinamici “con rappresentazione

ingresso-uscita”

• Modelli dinamici “con rappresentazione
nello spazio di stato”

• Modelli dinamici a scatola nera (black
box)

 Serie temporali

 Modelli statistici
65

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification

 Modelli a “principi primi” (“First principle Models”)

 Modelli basati sui “fenomeni di trasporto”
 Modelli basati sul “bilancio di popolazione”

 Modelli empirici o di “fitting”

 Dynamical models

• input-output dynamic models

• input-state-output dynamic models
or state-space models

• dynamic black box models
 Serie temporali

 Modelli statistici

66

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification
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Dynamic Models:
definitions

67

• A dynamical system is a state space S , a set of times T
and a rule R for evolution, R:S×T→S that gives the 
consequent(s) to a state s∈S . 

 A dynamical system consists of an abstract phase space or 
state space, whose coordinates describe the state at any 
instant, and a dynamical rule that specifies the immediate 
future of all state variables, given only the present values of 
those same state variables. 

 For example the state of a pendulum is its angle and angular 
velocity, and the evolution rule is Newton's equation F = ma.

• A dynamical mathematical model can be considered to be 
a tool describing the temporal evolution of an actual 
dynamical system. 

 Dynamical systems are deterministic if there is a unique 
consequent to every state, or stochastic or random if there 
is a probability distribution of possible consequents (the 
idealized coin toss has two consequents with equal 
probability for each initial state). 

 A dynamical system can have discrete or continuous time.

Dynamic Models:
input-output representation

MATHEMATICAL 
MODEL

input                output

68
 typical of automatic process control

 Roffel & Betlem, 2006

 Giua & 
Seatzu, “Analisi 
dei sistemi 
dinamici”, 2006

• An input-output equation reveals the direct relationship
between the output variable desired, and the input variable.

• This relationship often includes the derivatives of one or
both variables.

• Even with a higher order equation, the advantage is that
the output variable is independent of (uncoupled from) any
other variables except the inputs.
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Input-Output representation
Variables

69Basic Automatic Control prof. Guariso

Input-Output Models

General System Representation
(disturbances)

(parameters)

Process

1d 2d
Ld

1m

…

…

2m

Km
: :

1a 2a Ra

1y

2y

Jy

(vectorial) 

mathematical

model

(manipulated 
variables)

(output 
variables)

 typical of automatic process control

 Romagnoli & Palazoglu, Introduction to Process Control, 
2005

70
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Definition of 
Linear dynamic system

From Wikipedia, the free encyclopedia: http://it.wikipedia.org

A linear dynamic system is a model based on some kind
of linear operator H. Linear systems typically exhibit
features and properties that are much simpler than the
general, nonlinear case. By definition, they satisfy the
properties of superposition and scaling:

Given two inputs:

i1(t), i2(t)

as well as their respective outputs:

y1(t) = H(i1(t))
y2(t) = H(i2(t))

then a linear system must satisfy:

y1(t) + y2(t) = H( i1(t) +  i2(t))
for any  and .

71

Simple examples

To demostrate how to determine if a system is time-invariant
then consider the two systems:

System A: yA(t) = ti(t)

System B: yB(t) = 10i(t)
Since system A explicitly depends on t outside of i(t) then it is
time-variant. System B, however, does not depend explicitly
on t so it is time-invariant.

Definition of Time-invariant system

Retrieved from Simple Systems by Don Johnson: http://cnx.org/content/m0006/latest/

Systems that don't change their input-output relation with
time are said to be time-invariant.

The mathematical way of stating this property is to use the
signal delay concept:.

y(t) =S(i(t) )   ⇒ y(t−τ) =S(i(t−τ) ) 
If you delay (or advance) the input, the output is similarly delayed
(advanced). Thus, a time-invariant system responds to an input you may
supply tomorrow the same way it responds to the same input applied
today; today's output is merely delayed to occur tomorrow.

Retrieved from Wikipedia, the free encyclopedia: http://it.wikipedia.org

A time-invariant system is one whose output does not
depend explicitly on time.

72
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Definition of Time-variant system

A time-variant system is one that is not
time-invariant. The following things can be
said about a time-variant system:

• It has explicit dependence on time.

• It is not stationary
 It does not have an impulse response

(transfer function) in the normal sense. The system
can be characterized by an impulse response except
the impulse response must be known at each and
every time instant.

Examples of time-variant systems
The human vocal tract is a time variant system,

with its transfer function at any given time dependent
on the shape of the vocal organs. As with any fluid-
filled tube, resonances (called formants) change as
the vocal organs such as the tongue and velum move.
Mathematical models of the vocal tract are therefore
time-variant, with transfer functions often linearly
interpolated between states over time. 73

Input-Output Relation Linear Time-Invariant 

y(t) = d/dt [x(t)] yes yes 

y(t) = d2/dt2 [x(t)] yes yes 

y(t) = (d/dt [x(t)])2 no yes 

y(t) = d/dt [x(t)]+ x(t) yes yes 

y(t) = x1+x2 yes yes 
y(t) = x(t−τ) yes yes 
y(t) = cos(2πft) x(t) yes no 
y(t) = x2(t) no yes 
y(t) = |x(t) | no yes 
y(t) = mx(t) +b no yes 

Table 
of Typical Math Operators

Retrieved from:

http://cnx.rice.edu/content/m0006/latest/

74
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 Retrieved from Luenberger, Introduction to Dynamic Systems

A system of ODEs is called autonomous or time invariant if its
vector field does not depend explicitly on time.

Retrieved from
"http://en.wikipedia.org/wiki/Autonomous_system_%28mathematics%29"

An autonomous system is an ODE equation of the form

where x takes values in n-dimensional Euclidean space and t is
usually time. It is distinguished from systems of differential
equations of the form

in which the law governing the rate of motion of a particle
depends not only on the particle's location, but also on time; such
systems are not autonomous.

Simple examples

System A:

System B:

Since system A explicitly depends on t outside of x(t) then the dynamic
system is not autonomous. System B, however, does not depend
explicitly on t so it is autonomous.

Definition of Autonomous system
(in theory of differential equations)

Vector 
field

75

Dynamic Models:
input-state-output representation

MATHEMATICAL 
MODEL

Input                state               output

76

 Giua & 
Seatzu, 
“Analisi dei 
sistemi 
dinamici”, 
2006

 Behavioral models
 “internal” model of the process

 Roffel & Betlem, 2006

Intuitively, the state of a system describes enough
about the system to determine its future behavior.
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77

Definition of State

The state of a dynamic system
is defined through the smallest set 
of variables (called the state 
variables) such that the knowledge 
of these variables at t=t0, together 
with the knowledge of the input for 
tt0, completely determines the 
behavior of the system for any time.

Introduction to Process Control Romagnoli & Palazoglu

State variable  x(t)

Example
of input-state-output dynamic model:

OPEN TANK FOR WATER STORAGE

IN :

STATE: h(t)
OUT :

h(t)

78

VARIABLES

Initial Condition: h(0) = h0
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Input-state-output model 

Basic Automatic Control prof. Guariso 79

VARIABLES

Variables are 
things that 
vary and 
change

80
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VARIABLES
Classification in dynamic models

INPUT:
time-varying quantities that change according to a

known or prefixed law.
• The user (e.g., manipulated variables) or the outside
environment (e.g., disturbances) decides how they
change with time

OUTPUT:
quantities representing the observed or calculated

results that the model yields to outside.
• They are originally unknown, but provide (typically as
functions) results to outside once the input variables have
been specified and the state variables have been
calculated.

STATE:
quantities describing the present state of a system

enough well to determine its future behavior.
• They provide a means to keep memory of the
consequences of the past inputs to the system.
• They may be partly coincident with output var.
• The minimum number of state variables required to
represent a given system, n, is usually equal to the order of
the system's defining differential equation.

 HINT: The state variables are often given by the same
variables appearing within the initial conditions of the system’s
ODEs 81

State Variables

• It is necessary to know something else beside
the evolution of input and output variables:
initial conditions

• Such a “memory”, required to define the initial
condition, is called the state of the system at
the time instant when the input is applied.

• Therefore, it is necessary to define the state
variables to take into account the effects of
initial conditions (as a matter of fact, also
differential equations require an initial
condition to be solved).

• The choices for variables to include in the
state is highly dependent on the fidelity of
the model and the type of system.

• One can see immediately that the choice of
variables to be included in the state is not
unique.

Basic Automatic Control prof. Guariso

http://www.cds.caltech.edu/~murray/amwiki/index.php/FAQ:_What_is_a_state%3F_How_doe
s_one_determine_what_is_a_state_and_what_is_not%3F

82
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State Variables

Basic Automatic Control prof. Guariso 83

State-Space Models

Basic Automatic Control prof. Guariso 84
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State-Space Models

Basic Automatic Control prof. Guariso


it is a scalar model

85

86

F0

F1

F2

 With a constant cross 
sectional
area A, the volume of a tank 
can be expressed as:

V = Ah

where h represents the liquid 
level.

 Let us suppose that the 
control   objective is to 
maintain a constant level in 
the second tank while the 
inlet flow rate to the first tank 
is varied.

 The liquid level h2(t) is the  
variable that we want to be 
the controlled variable.

Introduction to Process Control Romagnoli & Palazoglu

Example 2: 
Pasteurized Milk Storage

(Two Non-interacting Tanks)
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87

Defining: State-space
process model

Introduction to Process Control Romagnoli & Palazoglu

Example 2 – Two (Non-interacting) Tanks
State-space Model

IC:

h1(0)=h1s , h2(0)=h2s

mass balances constitutive eqs.

88

Introduction to Process Control Romagnoli & Palazoglu

Example 2 – Two (Non-interacting) Tanks
State-space Model

MODEL CLASSIFICATION:

DYNAMIC, LINEAR, CONSTANT-COEFFICIENT,  
NON-AUTONOMOUS, TIME-INVARIANT, 2 ODE
SYSTEM.

ORDER = 2

vector
field
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State-space Models
Terminology

89

• nN is the order or size of the model

• x(t) is the vector of the state variables

• The n components of x(t) are phases

• The space spanned x(t) n is the 
state-space or phase-space

• u(t) is the vector of the input variables 
with m components 

• The function f:·+n ·m →n is 
the vector field

Linear State-space Models.
Terminology

90

 A is the is the state matrix (nn) 

 B is the is the input matrix (nm)
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Autonomous System 
(definition in Theory of Systems)

An autonomous system is a system
having the state not depending on input

OR

input constant with time

in its the mathematical model.

adapted from “notecontrolli_PRATTICHIZZO.pdf”

NB:

For a dynamic model described by a
system of ODEs, an autonomous system
is also time invariant

91

Autonomous System 
(in Non-Linear Dynamics )

A dynamic system is autonomous if its
vector field depends on the state x(t), but
does not explicitly depend on time.

92

Examples of 2nd order systems:

Autonomous system Non-autonomous system

with x(t)n

t +
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Introduction to Process Control Romagnoli & Palazoglu

Example 2 – Two (Non-interacting) Tanks
State-space Model

State-space
(linear)

process model

State matrix

Input matrix

State variables

Output variable

MODEL CLASSIFICATION:

DYNAMIC, LINEAR, NON-AUTONOMOUS, 
TIME-INVARIANT, 2 ODE SYSTEM.

ORDER = 2
93

Orbits or Trajectories
of a dynamic system

The forward orbit or trajectory of a state x is 
the time-ordered collection of states that x 
follow from an initial state x0 using the system 
evolution rule. 

•When both state space and time are 
continuous, the forward orbit is a curve x(t) 
parametric in t ≥ 0

•Different initial states result in different 
trajectories

Example of an orbit (order n=2)

x1

x2

94
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Phase portrait

The set of of all trajectories forms the 
phase portrait of a dynamical system. 

• in practice, only representative
trajectories are considered

• the phase portrait is usually built by 
numerical methods for nonlinear systems

• The analysis of phase portraits provides
an extremely useful way for visualizing
and understanding qualitative features of 
solutions.

• The phase portrait is particolarly useful
for scalar (1st order) and planar systems
(2nd order) 

95

x1

x2

Transients and regimes

• The orbits may have a bounded or
unbounded asymptotic behavior (for t
 ± ).

• If an orbit has a bounded asymptotic
behavior for t  + , the part of the
orbit describing such an asymptotic
behavior is referred to as regime and
the remaining part is referred to as
transient.

• The simplest and most well known
regime (bounded) is the equilibrium
point (steady-state point), which is
possible for every system order n

96
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Stability of an equilibrium point

For example,

the equilibrium of a pencil standing
on its tip is unstable;

the equilibrium of a picture on the
wall is (usually) stable;

the equilibrium of a ball on a flat
plane is (usually) indifferent.

Adapted fromOn-Line Lectures  ©Alexei Sharov, Department of Entomology, 
Virginia Tech, Blacksburg, VA
http://www.ento.vt.edu/~sharov/PopEcol/

97 More formal definitions of stability do exist …

An equilibrium may be stable or unstable or indifferent.

98

A single equation describing the effect of the input on the
output.

Finally,

Example 2 – Two (Non-interacting) Tanks
Input-Output Model

Introduction to Process Control Romagnoli & Palazoglu

substituting

differenziating

m(t) y(t)
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Mathematical Models
4th classification

(based on the type of description adopted 
for time

as the independent variable)

 VALID for DYNAMICAL SYSTEMS only 

1. continuous time models

2. discrete time models

99

CONTINUOUS-TIME SYSTEMS 

The time changes continuously. It is not
possible to define a minimum time
interval: it is always possible to consider
a smaller time interval.

Accordingly, the theory of continuous-
time systems has been defined and
studied, where the variables of the
system are continuous-time functions,
that is, at every time instant t, it is
possible to define and assign the
variable value.

Continuous-time systems: t  ℜ
100
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Ingresso            uscita
Input                output

DISCRETE-TIME SYSTEMS

input – output representation 

MATHEMATICAL 
MODEL

101

input – state – output representation
MATHEMATICAL 

MODEL

Ingresso            stato               uscita
Input                state               output

102

DISCRETE-TIME SYSTEMS

EXPLICIT TYPE

“IMPLICIT” TYPE

General representation 
of input–state–output  discrete-time models

SCALAR SYSTEMS: x(k) is a scalar variable
VECTOR SYSTEMS: x(k) is a vector variable of size n

 A deterministic system with discrete time is 
often defined a map.
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Example No. 1
Malthusian Growth Model (II)

If we let x(k) denote the population size
during time period k and let c denote the
population growth rate per unit time, the
Malthusian model can be written
mathematically in the following way:

x(k+1) = (1+c) x(k) 
A model in this form, where the population
at the next time period is determined by
the population at the previous time period,
is said to be a

difference equation model or a map.

The initial condition is:

IC: x(0) = x0

autonomous discrete-time system of order
1 (scalar model) 103

Model Order 

104

The order n is an integer number obtained as
the product between the size of the space
vector x and the time gap in the implicit
model representation.

 The time gap is the max time distance in
the implicit model representation

Example 1:

autonomous discrete-time system of order 1 (scalar
model)

Example 2:

autonomous discrete-time system of order 2 (vectorial
model)
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Fixed Points
for autonomous systems

x(k+1) = f(x(k)

105

DEFINITION of a fixed point: 

x(k+1) = x(k)
 x(k) may be a scalar or vector variable

DETERMINATION of a fixed point:

The fixed points are determined as the 
solutions of the algebraic eq. (scalar) or 
system of eqns.(vector):

x*= f (x*)

A fixed point can be stable or unstable.

A stable fixed point is an attractor for the 
trajectories originating in a reasonable 
neighborhood of it.

Orbits or Trajectories

106

Example:
autonomous non-linear, discrete-time model of order 2

fixed 
point

initial 
condition
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Example No. 2
Logistic Model 

107

Differently from the Malthusian model …
•developed by Belgian mathematician Pierre Verhulst 
(1838)

HYPOTHESES
•resources are limited for growth: N(t)≤Nsat

CLOSED-FORM SOLUTION

N0≠0

Nsat

Example No. 2
Logistic Map

108

adimen-
siona-
lization

discreti-
zation
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 Modelli a “principi primi” (“First principle Models”)

 Modelli basati sui “fenomeni di trasporto”
 Modelli basati sul “bilancio di popolazione”

 Modelli empirici o di “fitting”

 Dynamic models

• input-output dynamic models

• input-state-output dynamic models
or state-space models

• dynamic black box models
 Serie temporali

 Modelli statistici

109

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification

The model structures vary in complexity and order depending 
on the flexibility you need to account for the dynamics and on 
possible consideration of noise in your system. 

The simplest black-box structures are:
1.Linear polynomial model, which is the simplest input-output 
model (e.g., ARX model)

2.Transfer function, with a given number of adjustable poles
and zeros.
3.State-space model, with unknown system matrices, which 
you can estimate by specifying the number of model states
4.Non-linear parameterized functions

Black-Box Model Structures

110

Input                output

BLACK BOX 
MODEL
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• Black-box modeling is usually a trial-and-error 
process, where you estimate the parameters of 
various structures and compare the results. 

• Typically, you start with the simple linear model 
structure and progress to more complex structures. 

• You might also choose a model structure because 
you are more familiar with this structure or because 
you have specific application needs.

Black-Box Modeling 

111

 Black box models are not based on physical grounds 
and the equations do not reflect the internal structure 
of the process.

 Black box models usually have a linear structure, and 
because of this built-in linearity they have a limited 
validity range. 

Dynamic black box.
Linear polynomial models

112

Black box models may describe the system dynamics 
through a linear, time-invariant vector difference 
equation of finite dimension. 
•The difference equation has some model parameters.
The following difference equation represents a simple 
model structure:

where a and b are adjustable parameters.
•Parameters are a crucial point in dynamic black box 
model development.
•In order to parameterize a black box model, only the 
input-output behavior is required; detailed knowledge 
about the internal behavior is not necessary. 
•The parameters are estimated by minimizing a scalar 
function of the prediction error, i.e. the difference 
between the observed output and the model-predicted 
output.



23.01.14

57

Example No. 1
the ARMAX model 

113

where: 
y(t) represents the output at time t, 
u(t) represents the input (eXogenous variable) at time t, 
na is the number of poles for the dynamic model, 
nb is the number of zeros plus 1, 
nc is the number of poles for the disturbance model, 
nk is the dead time (in terms of the number of samples) 
before the input affects output of the system,
e(t) is the white-noise disturbance (gaussian)

 here t≅k

For a single-input/single-output system (SISO), the 
ARMAX (Auto-Regressive Moving-Average with 
eXogenous variable) model structure is:

Auto-Regression

Moving-Average 

System Identification

114

System identification is a methodology for building 
mathematical models of dynamic systems using 
measurements of the system's input and output signals/data.

The process of system identification requires that you:
1. Measure the input and output signals/data from your 
system in time or frequency domain.
2. Select a model structure.
3. Apply an estimation method to estimate value for the 
adjustable parameters in the candidate model structure.
4. Evaluate the estimated model to see if the model is 
adequate for your application needs.

•System identification uses the input and output signals you 
measure from a system to estimate the values of adjustable 
parameters in a given model structure.

•Obtaining a good model of your system depends on how well 
your measured data reflect the behavior of the system.

Documentation center
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 Modelli a “principi primi” (“First principle Models”)

 Modelli basati sui “fenomeni di trasporto”
 Modelli basati sul “bilancio di popolazione”

 Modelli empirici o di “fitting”

 Dynamic models

• input-output dynamic models

• input-state-output dynamic models
or state-space models

• dynamic black box models
 Serie temporali

 Modelli statistici

115

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification Dynamical modeling

Final Statement

116

A way to distinguish the techniques used 
when modeling dynamic processes is to 
picture them on a scale with two extremes at 
the ends: 

•at the one side 
black box 
system identification

•at the other side 
theoretical modeling or 

first principles modeling
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Mathematical Models
5th classification

1.  ANALYTICAL SOLUTIONS
 DIFFERENTIAL CALCULUS
 ALGEBRA

2. NUMERICAL SOLUTIONS 
 NUMERICAL CALCULUS

Ex.: numerical methods for PDEs

1. FINITE DIFFERENCE METHODS
(FDM)

2. FINITE ELEMENT METHODS (FEM)

3. COLLOCATION METHODS 117

(based on the type of solution,
with exclusion of empirical models)

 Modelli a “principi primi” (“First principle
Models”)
 Modelli basati sui “fenomeni di trasporto”

 Modelli basati sul “bilancio di
popolazione”

 Modelli empirici o di “fitting”

 Modelli dinamici
• Modelli dinamici “con rappresentazione

ingresso-uscita”

• Modelli dinamici “con rappresentazione
nello spazio di stato”

• Modelli dinamici a scatola nera (black
box)

 Time Series
 Modelli statistici

118

(on the base of the approach
adopted for model development)

Mathematical Models
1st classification


