Time Series: Definitions

A **time series** associates each data element with a specific point in time.

Frank Smietana in Mathcad documentation

Values taken by a variable over time (such as daily sales revenue, weekly orders, monthly overheads, yearly income) and tabulated or plotted as chronologically ordered numbers or data points.

http://www.businessdictionary.com/

A **time series** is a sequence of data points, measured **typically** at successive times spaced at uniform time intervals.

2

1

Y₁, Y₂,..., a series of values measured or observed for a variable Y at successive times t₁, t₂,... which may be reported as a sequence of integers k = 0, 1, 2, ...

(i) time series are NOT just data ...

TIME SERIES

by Michele MICCIO

Dept. of Industrial Engineering (Università di Salerno)

Prodal Scarl (Fisciano)

rev. 3 of November 27, 2013

Time Series: Examples

- the daily closing value of the Dow Jones index
- the annual flow volume of the Nile River at Aswan
- the daily temperature readings

. . .

- the sampled pressure measurements in a gas-phase chemical reactor
- the daily production of pasteurized milk plastic bottles in a factory

Time Series Representation

(Ex. of a line diagram)

1

• A time series is usually stored and made available in a computer file

• The time points are typically, but not necessarily, equidistant. For example, the daily factory output values do not contain data for holidays and weekends Time Series classification

- deterministic
- stocastic or probabilistic
- mixed (deterministic and stocastic together)

e.g., of **additive type**: where:

 $y_k = f_k + a_k$

 y_k = time series value at time k

 f_k = deterministic component at time k

 a_k = probabilistic component at time k

Time Series patterns (mainly in economics)

Long term Trend

Long term Trend + cyclic pattern Long term Trend + cyclic pattern + seasonal pattern + random fluctuations

Time series consist of four components:

Trend variations that move up or down in a reasonably predictable pattern,

Cyclical variations that correspond with business or economic 'boom-bust' cycles or follow their own peculiar cycles, usually multi-annual

Seasonal variations that repeat over a specific period such as a day, week, month, season, etc.,

Random variations that do not fall under any of the above three classifications. $^{\rm 6}$

Time Series patterns

Ex. of a time series with:

- random data (black oscillations)
- trend (black line),
- best-fit line (blue)
- and smoothing (red curve)

Time series analysis

Time series analysis comprises methods for

- 1. calculation/extraction of meaningful statistics (mean, variance, symmetry, kurtosis, autocorrelation, etc.)
- 2. *Trend* determination, with possible suppression of the oscillating pattern (filtering)
- 3. Estimation of cyclic patterns and their period
- 4. Estimation of seasonal variations and their period
- 5. *Detrending* the time series
- 6. Model identification for subsequent simulation and prediction
- 7. Estimation of missing or lost data in the series
- 8. Analysis/search of deterministic chaos
 - e.g. determination of "Lyapunov exponents"

Examples in engineering applications:

signal filtering

7

• design of predictive controllers

Time series analysis: 2. *trend* determination

- 1. least squares
- 2. empirical modeling
- 3. ...

Time series analysis: *Example No. 1*

Time Series Regression of Airline Passenger Data

Demo and data available in Matlab

Air Passenger Data

an array of monthly counts of airline passengers, measured in thousands, for the period January 1949 through December 1960:

% 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 y = [112 115 145 171 196 204 242 284 315 340 360 417 % Jan 118 126 150 180 196 188 233 277 301 318 342 391 % Feb 132 141 178 193 236 235 267 317 356 362 406 419 % Mar 129 135 163 181 235 227 269 313 348 348 396 461 % Apr 121 125 172 183 229 234 270 318 355 363 420 472 % May 135 149 178 218 243 264 315 374 422 435 472 535 % Jun 148 170 199 230 264 302 364 413 465 491 548 622 % Jul 148 170 199 242 272 293 347 405 467 505 559 606 % Aug 136 158 184 209 237 259 312 355 404 404 463 508 % Sep 119 133 162 191 211 229 274 306 347 359 407 461 % Oct 104 114 146 172 180 203 237 271 305 310 362 390 % Nov 118 140 166 194 201 229 278 306 336 337 405 432 1; % Dec % Source:

% Hyndman, R.J., Time Series Data Library,

% http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/.

% Copied in October, 2005.

9

(i) Tabular representation of a time series

Time series analysis: *Example No. 1*

Time Series Regression of Airline Passenger Data

Demo and data available in Matlab

Time series analysis: *Example No. 1*

Time Series Regression of Airline Passenger Data

Demo and data available in Matlab

Switch from linear to log scale on y-axis

Time series analysis: *Example No. 1*

Time Series Regression of Airline Passenger Data

Demo and data available in Matlab

13

(i) the month-to-month variation within years appears constant.

Time series analysis: *Example No. 1*

Time Series Regression of Airline Passenger Data

Demo and data available in Matlab

Fitting model to give a linear trend plus a cyclical component

Time series analysis: 2. *Filtering*

Objectives:

Eliminate fluctuations:

- eliminate cyclic, seasonal and irregular patterns
- allow *trend* determination

Investigate fluctuations

Methods:

- moving average
- Fourier transform
- ...

Time series filtering Moving Average of order M

Original Time Series:

 $\mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3 \dots, \mathbf{Y}_i \dots \mathbf{Y}_N$

New Time Series generated by a simple moving average (using a statistical tool, e.g., mean, median, etc., or a user-defined weighting scheme):

$$\mathbf{Y}_{\text{ma},1}$$
, $\mathbf{Y}_{\text{ma},2}$..., $\mathbf{Y}_{\text{ma},i}$... $\mathbf{Y}_{\text{ma},N}$

As an example, with arithmetic mean:

$$\begin{split} Y_{ma,i} &= (Y_{i\text{-}M/2} + ... + Y_i + ... + Y_{i\text{+}M/2}) / (M\text{+}1) \\ \text{with the span } \mathsf{M} \in \mathcal{N} \text{and even} \end{split}$$

Filtering Algorithm with Moving Average

1) let's have a time series with N \in $\mathcal N$ points and let be M \in $\mathcal N$ (even) << N

- 2) calculate $Y_{new,i}$ from Y_i with arithmetic mean from i=M/2+1 to i=N-M/2-1
 - (1) the new $Y_{new,i}$ series contains the trend and low frequency **oscillations only**.
- 3) construct a third series Y_i^* by subtraction:

 $\mathbf{Y}_{i}^{*} = \mathbf{Y}_{i} - \mathbf{Y}_{\text{new},i}$

(1) the new Y_i^* series contains the high frequency oscillations only.

1

The first as well as last M/2 points in the original series have to be discarded

The span M is a smoothing parameter:

- Depending on the span chosen, either high or low periodicity is revealed by the smoothed series
- ➤ M=0 gives the original series back
- M=N (in principle, M=largest even No.<N) gives the overall arithmetic mean</p>

Example No.2

Time series filtering with Moving Average of order M During salami "Nebrodi" ripening

Stazione Sperimentale per l'Industria delle Conserve Alimentari (Parma/Angri)

📖 Tesi Rendina 2005-06

Time series of RH data

sampling every 20 min (n° rilevamento)

Time series of RH data

sampling time 20 min

Time series of T data

sampling time 20 min

Time series analysis: 3. *Detrending*

Definition:

Detrending is the statistical or mathematical operation of removing trend from the series.

Objective:

- Detrending is often applied to remove a feature thought to distort or obscure the relationships of interest.
 - For example, in climatology a temperature trend due to urban warming might obscure a relationship between cloudiness and air temperature.
- Detrending is also sometimes used as a preprocessing step to prepare time series for analysis by methods that assume stationarity.

http://www.ltrr.arizona.edu/~dmeko/geos585a.html

Time series analysis: 3. *Detrending*

Methods:

- Simple linear trend in mean can be removed by subtracting a least-squares fit straight line from the series.
- More complicated trends might require different procedures. Four alternative approaches to detrending are:

• first differencing

A time series that is non-stationary in mean (e.g., trend in mean) can be made stationary by taking the first difference. The first-difference is the time series at time t minus the series datum at time t - 1:

 $\mathbf{w}_i = \mathbf{x}_i - \mathbf{x}_{i\text{-}1}$

where w_i is the first-differenced series.

- curve-fitting
- digital filtering
- **piecewise polynomials** (e.g., cubic smoothing spline)

http://www.ltrr.arizona.edu/~dmeko/geos585a.html

Time series analysis: 3. *Detrending*

EXAMPLE

23

Frank Smietana in Mathcad documentation

Outliers

Definition:

outliers are data points that are part of the series, but "apparently" are beyond an admissibile *range*

Methods for searching *outliers*:

- Filtering or *smoothing* data with a simple *fitting* model
- Calculating residuals as differences between the original value and the filtered (or the *fitting* model) value
- *Outliers* are just the original data whose residuals go beyond a predefined threshold

Time series analysis: 4. *Forecasting*

Definition:

Time series forecasting is the use of a model to predict future values based on previously observed values.

- a. short term trend
- b.long term trend

Methods:

- Extrapolation from a *fitting* model
- Development of a *black box* model (e.g., ARMA model)
- . . .