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Population Balance models
The population balance equation (PBE) is a statement of continuity for particulate
systems, originally derived in 1964.

Population balances are of key relevance to a very diverse group of scientists,
including astrophysicists, high-energy physicists, geophysicists, colloid chemists,
biophysicists, materials scientists, meteorologists and chemical engineers.

Chemical engineers have put population balances to most use, with applications in
the areas of crystallization; gas-liquid, liquid-liquid, and solid-liquid dispersions;
liquid membrane systems; fluidized bed reactors; aerosol reactors; and microbial
cultures.

Engineers encounter particles in a variety of systems. The particles are either
naturally present or engineered into these systems. In either case these particles
often significantly affect the behavior of such systems.

This modeling approach provides a framework for analyzing these dispersed phase
systems and describes how to synthesize the behavior of the population particles
and their environment from the behavior of single particles in their local
environments
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Population Balance models

Ramkrishna provides a clear and general treatment of population balances
with emphasis on their wide range of applicability. New insight into
population balance models incorporating random particle growth, dynamic
morphological structure, and complex multivariate formulations with a clear
exposition of their mathematical derivation is presented. Population
Balances provides the only available treatment of the solution of inverse
problems essential for identification of population balance models for
breakage and aggregation processes, particle nucleation, growth
processes, and more. This book is especially useful for process engineers
interested in the simulation and control of particulate systems. Additionally,
comprehensive treatment of the stochastic formulation of small systems
provides for the modeling of stochastic systems with promising new areas
of applications such as the design of sterilization systems and radiation
treatment of cancerous tumors.

Doraiswami Ramkrishna, 
Purdue University, West Lafayette, Indiana, U.S.A.

“Population Balances. Theory and Applications to Particulate 
Systems in Engineering”, Academic Press, ISBN: 0-12-576970-9, 

Pages: 355, Publication Date: 8 August 2000, Price: £83.99
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Population Balances

Formulation

The Population Balance Equation was originally derived in 1964, 
when two groups of researchers studying crystal nucleation and 
growth recognized that many problems involving change in 
particulate systems could not be handled within the framework of the 
conventional conservation equations only, see Hulburt & Katz (1964) 
and Randolph (1964) . 

They proposed the use of an equation for the continuity of particulate 
numbers, termed population balance equation, as a basis for 
describing the behavior of such systems. 

This balance is developed from the general conservation equation:

Input - Output + Net Generation = Accumulation

4
 § 4.4 in Himmelblau D.M. and Bischoff K.B., “Process Analysis and Simulation”, John 

Wiley & Sons Inc., 1967 (Collocazione: 660.281 HIM 1)
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Elements necessary 
for a population balance Model 
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Element General description Example

ENTITY • specific of each “particulate system”;
• crystallization, biochemical processes, 
polymerization, leaching, comminution, and aerosols
are just some examples;
• entities are “discrete” and not continuous;
• entities are “countable”, but may be infinite in 
number

Yeast cell in a 
fermenter

PROPERTIES
of ENTITY

• in general, entities have a specified set of m 
properties ζi with i = 1,2...m
• the properties ζi will depend on the application;
• typical examples are the entity's size diameter, 
entity's chemical composition, entity's age

Cell mass,
cell age, 
etc.

ENTITY
DISTRIBU-
TION

• the function ψ(t, x, y, z, ζ1, ζ2, ..., ζm) represents the 
entity distribution
• t is time
• x, y, z are the spatial coordinates
• it is similar to a probability density function

Number of cells per 
unit fermenter volume, 
unit cell mass, unit
cell age, etc. 

Entity distribution function

6

Congruence constraint

where Ω is the (3+m)-dimensional space of the independent variables:

3 spatial or external coordinates (x, y, z)

m properties or internal coordinates (ζi with i = 1,2...m)

 time t may be one additional independent variable

Physical meaning

is the fraction of entities at time t that are:
• contained in the infinitesimal volume dV=dxdydz
• characterized by values of properties in the ranges ζ1÷ζ1+dζ1, . . . , ζm÷ζm+dζm
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Conservation law

Accumulation = Net Generation

Generation
Positive and Negative terms are defined as:

Hypotheses:

• large, arbitrary, time-varying sub-space R(t)  
• closed sub-space, with no input or output of entities

(I)

7

Balance equation

One dimension 
a(t) b(t)

x

Multi-dimensional

where:
R(t) is a time-variable region of the space Ω
f(•) is a scalar function
l stands for any of the non-time variables x, y, z, ζ1, ζ2…., 
the sum  is over all such variables

Leibnitz formula
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The total derivates with respect to time included in the Leibnitz formula can be explained in a 
physical way:

vi is the change rate with respect to the time or kinetics of the property ζi

The Equation (I) becomes:

As the region R(t) is arbitrary, the necessary condition for that equation to be true 
is that the integrating term is null

This is the generalized population balance model on microscopic scale

(in x, y, z coordinates)
9

Generalized population balance model 
on «microscopic scale» 

Often ψ spatial dependence is not known or not desired, while only averaged value on system 
geometric volume V is requested.
The volume-averaged entity distribution is:

Integrating over the whole volume the generalized population balance model:

I II III IV

V

10

Switch to «macroscopic scale» 

Let’s examine the various terms:
The term (I) can be obtained by an inversion of the multi-dimensional Leibnitz 
formula, restricted to the spatial coordinates only:

S

V
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According to Gauss divergence theorem, the term V becomes: 

The term II is transformed by the same Gauss theorem

The terms I and II (included V) can be combined together:

11

S

V

VII II

In the term VI the surface S is considered as the sum of three contributions:

S = S1+ S2+ S*

Where:
• S1 is inlet surface to the system
• S2 is the outlet surface from the system
• S* is the remaining part of the surface (impenetrable)

The term VI becomes :

VII VIII IX

12

S1

S*

S2
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The term IV yields:

The terms VIII and IX can be simplified as follows:

where Q1 and Q2 are volumetric flowrates through S1 and S2, respectively.

The term III is integrated over the volume V and yields: 

13

Further Hypothesis: 
ψ1 and ψ2 are averaged and, therefore, constant, respectively on S1 and S2

After replacing all the terms:

Dividing by V:

ACC PSEUDO/CONV GEN IN OUT

14

This is the population balance model on «macroscopic scale»

(without x, y, z coordinates)

Population balance model on «macroscopic scale» 
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Example No. 1
Vapor Deposition in a gas-solid fluidized bed

15

 ch.14 pag.136, Daizo Kunii and Octave Levenspiel, Fluidization Engineering , 2nd. ed. 
Butterworth-Heinemann, 1991

• Steady state

• Macroscopic approach

• Constant inventory of particles in the fluidized bed

• All particles having the same chemical composition

• Particles having spherical geometry

• Particles having constant density

• No new particle formed directly by vapor deposition 

• Negligible elutriation

• Negligible solid-solid and solid-wall attrition

16

Hypotheses

NOMENCLATURE

• W = bed mass (inventory of particles)

• F0 = mass feed rate of fresh particles 

• F1 = mass discharge rate of processed particles

scheme 
of the fluidized bed 

 O. Levenspiel, D. Kunii, T. Fitzgerald 
The processing of solids of changing size in bubbling fluidized beds
Powder Technology, Volume 2, Issue 2, December 1968, Pages 87-96

AIR
+

VAPOR

AIR

W

p(d)

T, P

F0 p0(d)

F1 p1(d)
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Entity: solid particles

Property: particle diameter d

Objective: → p(d) [=] m-1

p(d)dd is the mass fraction of particles
with diameter between d and d+dd

17

Vapor Deposition
in a gas-solid fluidized bed 

Population Balance approach:

the generation term

18

No. particles in

[d; d+dd]

rate of 
particle 
volume 
change

particle 

density
 

particle
size 

interval

/
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The overall generation

19

Overall Mass Balances

on the solid phase with ref. to the whole fluid bed:

IN – OUT + GEN  = 0

1.

20

 This is NOT a Population Balance eq.

on the gas phase with ref. to the whole fluid bed:

1 bis.
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Population Balance approach:

the mass balance
per unit time 
and 
with ref. to the size interval [d;d+dd]:

21

IN 
with feed

OUT 
with 
discharge

entering the 
control volume
[d; d+dd] from 
a lower size

leaving the 
control volume
[d; d+dd] to a 
larger size

generation in the 
interval
[d; d+dd] 

d d+dd

t t+dt

control volume
in the property space

AIR
+

VAPOR

AIR

W

p(d)

T, P

F0 p0(d)

 Back mixing:  p1(d) = p(d)

 “monosize” feed:  p0(d) = (d-D0)

22

F1 p1(d)

Further Hypotheses

DIRAC DELTA FUNCTION
(UNIT IMPULSE)

δ(d)=0 for dD0

δ=∞ for d=D0

0 D0
d
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with ref. to an infinitesimal size interval located immediately below the feed size D0: [D0; D0-dd]

integration over [0, D0] gives p(D0):

4.

23

Population Balance approach:
integration of mass balance eq.

0 D0
d

→ p(d)dd = 0

manipulation and integration over [D0, d] with d>D0 give:

24

Population Balance approach:
integration of mass balance eq.

with ref. to an infinitesimal size interval [d;d+dd] located above the feed size D0: 
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Taking the exponential, 
replacing eq. 4
and then solving for p(d) gives:

Population Balance approach:
entity distribution eq. p(d)

25

4.

3.

where d’ is an integration variable

Population Balance approach:
congruence condition for p(d)

26

2.
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Population Balance approach:

Final equations

1.

27

3.

2.

Population Balance approach:
Integro-differential equations

28

More generally, size distributions are time dependent.
Ex.:
rate of change of the distribution (shape) depends on the whole
distribution

x(s,t) under 
consideration

agglomeration of these 
may form a particle of 

size s breakage of these may 
form a particle of size s

breakage of x(s,t) affects 
the distribution
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Example No. 2
Sublimation in a gas-solid fluidized bed

29

• Macroscopic approach

• Batch operation (dynamical system)

• “Active” particles (i.e., sublimating particles) different 
from the particles constituting the fluidized bed

• Perfect mixing

• All “Active” particles maintain the same composition

• Particles having spherical geometry

• Particles having constant density

• Negligible elutriation

• Negligible solid-solid and solid-wall attrition

30

Hypotheses

NOMENCLATURE

• W0 = overall mass of sublimating solid particles at
time 0

• W(t) = overall mass of sublimating solid particles
at time t

scheme 
of the fluidized bed 

Air
+
Vapor

Air
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Population Balance approach:
batch sublimation in fluidized bed 

31

Entity: mass of sublimating solid particles

Property: particle diameter d

Objective: → m(d,t) [=] kg/m

m(d,t)d is the mass of sublimating particles in the bed

with diameter between d and d+ d at the time t

Population Balance approach:
batch sublimation in fluidized bed 

32

control volume in the “property space” 

mass Balance
on the size interval d and in the time interval t
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Population Balance approach:
batch sublimation in fluidized bed 

Let us divide by t 
For t  0 

Let us divide by d

For d  0

PDE subject to:
IC: for t=0 m(d,0) = mo(d)
BC: for d=0, t m(0,t) = 0

Population Balance approach:
batch sublimation in fluidized bed 

Comparison with the population balance model on «macroscopic scale»

Total mass at time t:
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Population Balance approach:
batch sublimation in fluidized bed 

Particular cases for sublimation kinetics 

1. Volume 2. Surface

Yeast cell distribution in a fermenter

36
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Example  of sine wave
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