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Abstract 
Particulate processes are often encountered in industry. The polydispersity of some key properties 
characterizes particulate processes and makes them ill-suited to be modeled within the framework of 
conventional conservation equations only. In the mid 60s a tool called Population Balance Equation 
was developed to quantify the dynamics of particulate processes. This paper aims to give an 
introduction to the Population Balance Equation and review its state of the art. 

Introduction 
        Particulate processes are encountered in many applications and are widely used in the production 
of valuable industrial products. Crystallization, biochemical processes, polymerization, leaching, 
comminution, and aerosols are just some examples of particulate processes. Such processes differ 
considerably from one another but they all are characterized by the presence of a continuous phase and 
a dispersed phase comprised of entities with a distribution of properties, such as size, chemical 
composition, etc. The entities typically interact with one another as well as with the continuous phase. 
Such interactions may vary from entity to entity. Therefore, the polydispersity of particulate processes 
affects significantly the behavior of such systems, thus affecting the quality of the final products. 
Moreover, the polydispersity makes particulate processes ill-suited to be modeled within the 
framework of conventional conservation equations only.  
This paper deals with the Population Balance Equation, a tool to quantify the dynamics of particulate 
processes, which was developed in the mid 60s and since then has experienced wide acceptance and 
use in the field of particulate processes. This paper describes the formulation of the Population 
Balance Equation, and reviews the strenghts, the weaknesses and the status of this approach. 

Formulation 
The Population Balance Equation was originally derived in 1964, when two groups of researchers 
studying crystal nucleation and growth recognized that many problems involving change in particulate 
systems could not be handled within the framework of the conventional conservation equations only, 
see Hulburt & Katz (1964)  and Randolph (1964) . They proposed the use of an equation for the 
continuity of particulate numbers, termed population balance equation, as a basis for describing the 
behavior of such systems. This balance is developed from the general conservation equation 
 

Accumulation = Input - Output + Net Generation                                      (1) 
 
applied to the number of entities having a specified set of n properties ζi i = 1,2...n. The properties ζi to 
be considered for the number balance will depend on the application. Typical examples are the entity's 
size diameter, entity's chemical composition, entity's age...  In equation 1, all the terms represent 
number of entities with the specified property in a given interval, each term being related to certain 
transport, generation or destruction processes. Thus the accumulation term is the change of number of 
entities in a given property interval by accumulation in the system, the input and output terms are 
related to convective flow, the generation term includes both generation and destruction by continuous 
or discrete processes. Examples of continuous processes are chemical reaction or precipitation. 
Discrete generation processes are those giving birth or death of entities in a given property interval 
such as nucleation (birth), agglomeration (birth) or breakage (death). 
The derivation of the Population Balance Equation is equivalent to the development of the 
conventional equations of change, i.e. the number balance shown in equation 1 is applied to a volume 
element of the system ∆x ∆y ∆z fixed in the space, the resulting equation is divided by the volume 



element and the limit as ∆x ∆y ∆z go to zero is taken. By doing this, the microscopic Population 
Balance Equation is obtained 
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where Ψ(t, x, y, z, ζ1, ζ2, ..., ζn) is the number density distribution, vj j = x, y, z is the velocity of 
propagation of entities along the spatial coordinate axes x, y, z , whereas vζj is the velocity of property 
coordinate axes ζi, D is the rate of death of entities and B is the rate of birth of  entities. Therefore, the 
partial derivative with respect to time represents the accumulation term, the partial derivatives with 
respect to the spatial coordinate axes represent the convective transport term, the partial derivatives 
with respect to the property coordinate axes represent the continuous generation term and D and B 
give the discrete generation term. For more details about the derivation of the Population Balance 
Equation, the reader is referred to the original work by Hulburt & Katz (1964)  and Randolph (1964). 
 
It is therefore not surprising that equation 2 shows an obvious resemblance with the conventional 
equations of transport. For example, the equation of continuity is given by  (Bird, Stewart & Lightfoot, 
2002) 
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Nevertheless, note some important differences between the conventional equations of transport and the 
Population Balance Equation. First, the discrete generation term does not have a counterpart in the 
conventional equations of transport. But, more importantly, the Population Balance Equation is a 
functional equation not a scalar equation. The latter explains why the Population Balance is typically 
more difficult to solve mathematically than the conventional equations of transport. 
There are many examples in physical modeling where the spatial variation might be neglected, and 
where the interest lies in studying the global behavior of the system. This led to the development of 
the macroscopic balances in transpor phenomena theory. Similarly, there are many instances in the 
field of particulate processes in which the macroscopic behavior is of main interest. Therefore, a 
macroscopic version of the Population Balance Equation was developed  
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where ψ (t, ζ1, ζ2, ..., ζn) is the geometrically averaged number distribution, i.e. it represents the 
number of entities in the given property interval per unit volume. In equation 4, the derivative with 
respect to time represents the accumulation term, the first two terms on the r.h.s represent the 
convective transport term, the derivative terms with respect to the property coordinate represent the net 
continuous generation term and the averaged birth rate B minus the averaged death rate D represent 
the net discrete generation term.  
The macroscopic Population Balance Equation is the version that has been most widely used in 
practical applications, and the version that has attracted most attention. 

Pros and cons of the Population Balance Equation 
The secret of the success of the Population Balance Equation for dynamic modeling of particulate 
processes lies in its ability to describe systematically the polydispersity of such processes. Moreover, 
the Population Balance Equation is able to describe mathematically a wide range of complex events 
affecting such processes. Some good examples of complex events that can be accounted for in the 
Population Balance Equations are the nucleation phenomena taking place in crystallization, the 
disintegration of particles in comminution, the aggregation event in polymerization, etc. Finally, 
another advantage of this tool comes from its general character and wide application. Any advance 
that might be obtained for one certain application can easily be extended to other applications. For a 
good review of applications, the reader is referred to Ramkrishna (2000). 



However, the application of the Population Balance Equation presents also certain drawbacks. The 
main problem is that the resulting formulations may be mathematically challenging. The macroscopic 
balance equation, when all terms are used, typically yields to an integrodifferential equation. 
Analytical solution of integrodifferential equations is in most cases impossible. Fortunately, extensive 
research has been devoted to the solution of Population Balance Equations. The method of moments, 
as developed by Hulburt & Katz (1964), is the most widely used method to reduce integro-differential 
equations into a set of Ordinary Differential Equations (ODEs), but it is not always applicable because 
this method may lead to an open set of equations. Examples of numerical solution methods proposed 
in the literature (Ramkrishna, 1985; Ramkrishna, 2000) are: the method of weighted residuals, the 
method of self-preserving distributions, Monte Carlo simulation techniques, the size interval-by-size 
marching method and discretization via fixed/moving pivot techniques. Discretization techniques are 
widely used and might lead to a system of Differential and Algebraic Equations (DAEs). An example 
about the use and solution of a Population Balance Equation yielding a DAE system can be found in 
Dueñas Díez, Ausland, Fjeld & Lie (2002). 

State of the Art 
In the last decade, the focus has been displaced from finding solution methods to using explicitely the 
Population Balance Equation models for control purporses. The first notable attempt was the 
controllability analysis suggested in Semino and Ray (1995) and applied to emulsion polymerization 
Semino and Ray (1995b). Chiu & Christofides (1999, 2000) successfully applied nonlinear output 
feedback controllers to a crystallization process. Model predictive control, which is a control 
framework that has spread in the process industry during the last decades, has also received a great 
deal of attention in the field of particulate processes in the last decade. Eaton & Rawlings (1990) used 
nonlinear programming to solve the nonlinear model predictive control formulation of a batch 
crystallizer. Nonlinear model predictive control was also used in Crowley, Meadows, Kostoulas & 
Doyle (2000) to optimize the performance of a semibatch emulsion polymerization reactor. Linear 
model predictive control has been proposed for the stabilization of oscillating microbial cultures in 
bioreactors Zhu, Zamamiri, Henson & Hjortsø (2000). 

Conclusion 
This paper gives an introduction to the Population Balance Equation, a tool for dynamic modeling of 
particulate processes which has received a great deal of acceptance due to its ability to describe the 
polydispersity and the complex events often encountered in particulate processes. The derivation of 
the Population Balance Equation is similar to the derivation of the equations of transport, but leads to 
functional equations which are difficult to solve. Indeed, the search for ways of overcoming the 
mathematical complexity of the resulting formulations focused during several decades all the attention 
and research effort. Nowadays several solution aproaches, both analytical and numerical, are available, 
and the main focus is to integrate the Population Balace Equation models with process control. 
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