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16.  Block Diagrams 
 
16.1  Combining Transfer Functions Using Block Diagrams 
Laplace domain transfer functions enable us to manipulate complex equations using simple algebra. 
For example, consider two non-interacting draining tanks. If we assume that drain flow rate is 
proportional to hydrostatic head, we can write the equations using perturbation variables: 
 

The tank 1 ODE is )()(
)(

011
1

1 tFth
dt

tdh
A PP

P

C =+α       where 0)0(1 =Ph          (16.1) 

 
In the Laplace domain, Eq. 16.1 becomes 
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The tank 2 ODE is )()(
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In the Laplace domain, Eq. 16.4 becomes 
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The tank 2 transfer function is thus ( ) 1/
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With the above as a basis, we write general coupled process ODEs as 
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Process 2: )()(
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Combining the time domain ODE’s of Eqs. 16.7 and 16.8 into a single second-order differential 
equation describing how y2(t) responds to changes in u(t) requires manipulation of ODEs as follows: 
 

Solve Eq. 16.8 for y1(t): 
2

2 2

1
2

( ) ( )
( )

P

P

dy t y t
dty t
K

τ +
=              (16.9) 



 

156 
 

Practical Process Control® by Douglas J. Cooper 
Copyright © 2005 by Control Station, Inc. 

All Rights Reserved 

 

Take the derivative of Eq. 16.9: 

2
2 2

2 2
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Substitute Eqs. 16.9 and 16.10 into Eq. 16.7: 
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Multiply both sides by KP2 and combine like terms: 
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In the Laplace domain, we combine the transfer functions using simple algebra, which is the reason 
for converting from the time domain into the Laplace domain and back: 

 

                  1 2 2 1 2
system 1 2

1 1 2
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and thus 

                                                             2 1 2
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                                   (16.14) 

 
As we expect, converting Eq. 16.14 back to the time domain yields Eq. 16.12. This comparison of 
time domain versus Laplace domain equation manipulation helps demonstrate the benefit of using the 
Laplace domain in our subsequent analyses. 
 A block diagram is a convenient way to visualize the combination and manipulation of 
Laplace domain equations. As shown in Fig. 16.1, we use a summer block (a circle) to add block 
inputs and a multiplier block (a square) to multiply block inputs: 
 

 
 
 

Summer: 
 
 
 
 

 

    Multiplier: 
 

 
Figure 16.1 – Blocks used to create a Laplace domain block diagram 
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Example 1: Show this manipulation using block diagrams:    Y(s) = A(s) − B(s) − C(s) 
 
Solution: Below are two of several possibilities: 

        

+ +– –
A(s)

B(s) C(s)

Y(s)

                      

A(s)

B(s)

C(s)

Y(s)+

–
–

 
 
                    [A(s) − B(s)] − C(s) = Y(s)                                 A(s) − B(s) − C(s) = Y(s) 
   

     
 
Example 2: Show this manipulation using block diagrams:   Y(s) = A(s)G1(s)G2(s) 
 
Solution: Below are two of several possibilities: 
 
 

                   
 

          Y(s) = B(s)G2(s)                                                           Y(s) = C(s)G1(s)       
          B(s) = A(s)G1(s)                                                           C(s) = A(s)G2(s)         
          Y(s) = A(s)G1(s)G2(s)                                                   Y(s) = A(s)G1(s)G2(s)   
 
 

     
 

Example 3: Show using block diagrams:   Y(s) = [A(s) − B(s)]G(s)  
 
Solution: Below are two of several possibilities: 
 

        

+
A(s)

B(s)

G(s)
Y(s)

–

                              

A(s)

B(s)

G(s)

G(s)

Y(s)+

–

 
 
           Y(s) = [A(s) − B(s)]G(s)                            Y(s) = A(s)G(s) − B(s)G(s) = [A(s) − B(s)]G(s) 
 

     

G1(s) G2(s) 
B(s) Y(s) A(s) 

G2(s) G1(s) 
C(s) Y(s) A(s) 
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Example 4: Show using block diagrams:   )(
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Solution: Below is one of several possibilities: 
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16.2  The Closed Loop Block Diagram 
As shown in Fig. 16.2, the closed loop block diagram in the time domain is 
 
 

 
 

Figure 16.2 – Closed Loop Block Diagram in Time Domain 
 
 
 
In the Laplace domain, the closed loop block diagram is as shown in Fig. 16.3: 

 

Controller 
Final 

Control 
Element 

Process 

Disturbance 

   Measurement          
Sensor/Transmitter     

+ 

ysp(t) e(t) u(t) m(t) 
+ 

+ y(t) 

y(t) ym(t) 

d(t) 

– 
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Figure 16.3 – Closed Loop Block Diagram in Laplace Domain 
 
Notice that it is not only the process and controller that have transfer functions describing their 
dynamic behavior. As shown in the block diagram of Fig. 16.3, final control element (e.g. valve, 
pump) and measurement sensor also have transfer functions: 
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sE
sU

sGC =               
)(
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sU
sM

sGF =   
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sY
sY

sG M
M =                    (16.15) 

                            controller                      final control element               measurement sensor 
 
The block diagram shows that: 
 
 E(s) = Ysp(s) − YM(s)           (16.16) 
 
The block diagram also shows that the transfer function for the measured process variable is 
somewhat more complicated when a disturbance variable is included. Following the block diagram 
rules presented above, the transfer function is: 
 
 Y(s) = M(s)GP(s) + D(s)GD(s)          (16.17) 
 
16.3  Closed Loop Block Diagram Analysis 
Building on the principles discussed earlier in this chapter, we can write a series of equations as we 
step around the closed loop block diagram in an orderly fashion. A convenient place to start in the 
balance is with process variable Y(s) as it exits the block diagram on the right. The equations thus 
develop as: 

GC(s) 

Final 
Control 
Element 

Process

Disturbance

   Measurement                
Sensor/Transmitter            

+ 
Ysp(s) E(s) U(s) M(s)

+ 

+ 

Y(s) YM(s) 

D(s)

– 
Controller 

GF(s) GP(s)

GD(s)

GM(s)

Y(s)
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                                                    Y(s) = M(s)GP(s) + D(s)GD(s)                                                  (16.18a) 
 

    M(s) = U(s)GF(s)                                                                     (16.18b) 
 

    U(s) = E(s)GC(s) = [Ysp(s) − YM(s)]GC(s)                                 (16.18c) 
 

    YM(s) = Y(s)GM(s)                      (16.18d) 
 
Substituting Eq. 16.18b into Eq. 16.18a, and Eq. 16.18d into Eq. 16.18c yields: 
 
 Y(s) = U(s)GF(s)GP(s) + D(s)GD(s)         (16.19a) 
 

 U(s) = [Ysp(s) − Y(s)GM(s)]GC(s)        (16.19b) 
 
Substituting Eq. 16.19b into Eq. 16.19a yields: 
 
 Y(s) = [Ysp(s) − Y(s)GM(s)]GC(s)GF(s)GP(s) + D(s)GD(s)                (16.20) 
        
                                 = Ysp(s)GC(s)GF(s)GP(s)  − Y(s)GM(s)GC(s)GF(s)GP(s) + D(s)GD(s)            (16.21) 
 
Rearrange to obtain 
 

                             Y(s)[1+ GM(s)GC(s)GF(s)GP(s)] = Ysp(s)GC(s)GF(s)GP(s)  + D(s)GD(s)            (16.22) 
 
Combining these equations and solving for Y(s) produces the following closed loop Laplace equation: 
 

             )(
)()()()(1
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)()()()(1
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+
+

+
=     (16.23) 

 
Here we realize that a complex transfer function can be constructed from a combination of simpler 
transfer functions. As this analysis reveals, the closed loop transfer functions are 
 
     Process Variable to Set Point (when disturbance is constant): 
 

                                                 
)()()()(1

)()()(
)(

)(
sGsGsGsG

sGsGsG
sY

sY

MPFC

PFC

sp +
=  

 
     Process Variable to Disturbance (when set point is constant): 
  

                                                    
)()()()(1

)(
)(
)(

sGsGsGsG
sG

sD
sY

MPFC

D

+
=  

 
With the controller in automatic (closed loop), if the dynamics are disturbance driven or set point 
driven, the characteristic equation that reveals the inherent dynamic character of the system is the 
denominator of the transfer function, which in this case is 
 
                                                   0)()()()(1 =+ sGsGsGsG MPFC                                               (16.24) 
    
Recall that the roots of the characteristic equation (the poles of the transfer function) indicate whether 
or not a system is stable and the degree to which it has tendency to oscillate. The analysis above 
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reveals that the roots of Eq. 16.24 will provide this same important information for a closed-loop 
control system. 
 
16.4  Simplified Block Diagram 
While the final control element, process and sensor/transmitter have individual dynamics, from a 
controller’s viewpoint it is impossible to separate these different behaviors. A controller sends a 
signal out on one wire and sees the response in the process variable when the measurement returns on 
another wire. As a consequence, the individual gains, time constants and dead times all lump together 
into a single overall dynamic response. A lumped or simplified block diagram can represent this as: 
 

Ysp(s) E(s) U(s)

Y(s)

GC(s) GP(s)
+

–

Y(s)

Controller Process

 
 

Figure 16.3 – Simplified Closed Loop Block Diagram in Laplace Domain 
 
As before, we write a balance around the closed loop block diagram of Fig. 16.3 that starts and ends 
with Y(s): 
                                                    Y(s) = U(s)GP(s)  
 

    U(s) = E(s)GC(s) = [Ysp(s) − Y(s)]GC(s) 
 
Combining these equations and solving for Y(s) produces the closed-loop process variable to set point 
transfer function that describes the dynamic response of the measured process variable in response to 
changes in set point: 
 

                                                       
)()(1

)()(
)(
)(

sGsG
sGsG

sY
sY

PC

PC

sp +
=                                                    (16.25) 

 
 

The characteristic equation for this closed-loop system is the denominator of the transfer function of 
Eq. 16.25, or: 
 
                                                          0)()(1 =+ sGsG PC                                                             (16.26) 
 
The roots of Eq. 16.26, which are the poles of the transfer function of Eq. 16.25,  indicate whether or 
not the closed-loop system is stable and the degree to which it has tendency to oscillate. 
 
16.5  The Padé Approximation 
Before we continue with our analysis of block diagrams, we recognize the need for a rational 
expression for dead time in the Laplace domain, se θ− . This will permit us to employ normal algebraic 
manipulations during our analysis. The Taylor series expansion for se θ−  is: 
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2 2 3 3 4 4

1
2! 3! 4!

s s s se sθ θ θ θθ− = − + − + + K                                                (16.27) 

For very small values of dead time we can truncate the series as: 
 

                                                1se sθ θ− ≅ −                                                                     (16.28) 
 
A Padé approximation is a clever expression that more accurately approximates the Taylor series of 
Eq. 16.27 while providing the rational expression we seek. There are a family of Padé expressions 
that become increasingly accurate as they increase in complexity. A simple Padé form we use in the 
next section is exact for the first three terms of the Taylor series expansion and quite close for the 
fourth term: 
 

                                                               
s
se s

θ
θθ

+
−

≅−

2
2  

which we can show using long division yields the series: 
  

                                                     K+−+−=
+
−

42
1

2
2 3322 sss

s
s θθθ

θ
θ

 

 
 
16.6  Closed Loop Analysis Using Root Locus 
The poles of interest for our simplified closed loop system are the roots of Eq. 16.26: 
 
                                                               0)()(1 =+ sGsG PC  
 
This analysis assumes that the process behavior, and thus, the process transfer function, remains 
constant. Adjustable controller tuning provides the ability to move the poles (root location), thereby 
manipulating closed-loop system behavior. 
 

Example 1: A true first order process without dead time, with a process gain KP = 1 and a time 
constant 1=Pτ , is under P-Only control. What is the impact of controller gain, KC , on closed 
loop system behavior? 
 

Solution: A first order process transfer function is  
1

)(
+

=
s

K
sG

P

P
P τ

 

 
From the problem statement, we know that 
 

 
1

1)(
+

=
s

sGP  

 
The P-Only controller transfer function is 
 
 CC KsG =)(  
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Substituting GP(s) and GC(s) into the characteristic equation, we obtain 
 

 0
1

1)()(1 =
+

+=+
s
K

sGsG C
PC  

 
Rearranging yields 01 =++ CKs  
 
We recall that s is defined in the complex plane as bias += , so 
 
 iKbia C 001 +=+++  
 
Equating like real term gives us 01 =++ CKa  
 
and equating like imaginary terms: ibi 0=  
 
We now see that the roots/poles as a function of KC are 
 
 KC        a =−KC −1       b = 0 
 

   0            −1                   0  
  10          −11                  0 
 100        −101                 0 
 
We can examine this result on the s plane of Fig. 16.4 and note that the single root always lies on 
the real axis as long as KC ≥ −1. For increasing positive values of KC, the real root becomes 
increasingly negative: 
 

Im

– 1

KC increases
Re

KC = 0

s plane  
Figure 16.4 – P-Only root locus (root location) in the complex plane 

 
All positive values of controller gain, KC, yield a solution with no imaginary part. Hence, a true 
first order system under P-Only control cannot be made to oscillate, no matter how large a KC 
value used. It is also unconditionally stable for all positive KC because the root always remains on 
the left hand side of the s plane.  
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 It is interesting to note that a true first order system can remain stable even when the 
controller gain has the wrong sign. For example, if KC = −0.5, then  a = −0.5 and  b = 0. This root 
is located on the left hand side of the s plane, and thus, the system will remain stable (though 
control would be poor). A value of KC = −10 yields an a = 9.0 and b = 0, which produces a root 
located on the right hand side of the s plane, indicating that the system is unstable. As the next 
example illustrates, even a small value of process dead time dramatically changes the inherent 
dynamic nature of a closed loop system. 

 
     

 
 
 
 
 
 
 
 
  

Example 2: A first order plus dead time (FOPDT) process with a process gain, KP = 1, a time 
constant, 1=Pτ , and a dead time, 1.0=Pθ , is under P-Only control. What is the impact of 
controller gain, KC , on closed loop system behavior? 
 

Solution: A FOPDT process transfer function is ( )
1

Ps
P

P
P

K eG s
s

θ

τ

−
=

+
. 

 
 

From the problem statement, we know that 
 

 
1

)(
1.0

+
=

−

s
esG

s

P  

 
The P-Only controller transfer function is 
 
 CC KsG =)(  
 
Substituting GP(s) and GC(s) into the characteristic equation, we obtain 
 

 0
1

1)()(1
1.0

=
+

+=+
−

s
eK

sGsG
s

C
PC  

 
We can then employ the Padé approximation: 
 

 
s
se s

1.02
1.021.0

+
−

=−  

 
Substituting the Padé approximation into the characteristic equation gives us 
 

 2 0.11 0
2 0.1 1

CKs
s s

−⎛ ⎞+ =⎜ ⎟+ +⎝ ⎠
  

 

Rearranging yields 022)1.01.2(1.0 2 =++−+ CC KsKs  
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We can then multiply both sides by 10 and then solve for the roots of the characteristic equation: 
 

 
2

1 2
(21 ) (21 ) 4(20 20 )

,
2

C C CK K K
p p

− − ± − − +
=  

 

 
221 (441 42 80 80 )

       
2

C C C CK K K K− + ± − + − −
=  

 

 When the roots are real:  
221 122 361

       
2

C C CK K K− + ± − +
=   

 

When they have imaginary parts: 
221 122 361

   
2

C C CK i K K− + ± − + −
=  

 
We can now solve for the roots using various values of KC: 
 
 KC        P1            P2 
 0   −1.0        −20 
 1   −2.25        −17 
 2   −4.0        −15 
 3   −8.0        −10 
               repeated real roots  → 3.0345  −8.99         −8.99 
 3.04  −8.98 +    0.4i           −8.98 −   0.4i 
 3.2   −8.90 +  2.19i           −8.90 −  2.19i 
 4.0   −8.50 +  5.27i           −8.50 −  5.27i 
 10.0  −5.50 +  13.8i           −5.50 −  13.8i 
 20.0  −0.50 + 20.49i          −0.50 − 20.49i 
                    limit of stability → 21.0         0 +  20.98i                 0 − 20.98i 
 25.0         2 + 22.72i                 2 − 22.72i 
 50.0    14.5 + 28.46i            14.5 − 28.46i 
 
The limit of stability is the point where the roots fall directly on the imaginary axis (the real part 
of the root is zero). This is considered the limit of stability because as soon as the roots cross over 
to the positive real part of the s plane, the system becomes unstable.  
 An important observation from this example is that the addition of a small amount of process 
dead time is enough to transform a process that will not even oscillate (as shown in Example 1) 
into a process that will oscillate and then go unstable as controller gain, KC, increases.  
 To gauge the accuracy of the Padé approximation, we could construct this problem in Custom 
Process. There we will find that the limit of stability for this system is actually closer to a 
controller gain KC = 16 rather than the KC = 21 predicted from the above anlaysis. The difference 
arises because Loop Pro does not employ an approximation for dead time in its calculations.  
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−1-10 -8.99

Im

Re

−21

21

−1-10 -8.99

Im

Re

−21

21

 
 

 
     

 
 

 

16.7  Exercises 
 
Q-16.1 Showing all steps, derive the closed loop “set point to measured process variable” transfer 

function for this block diagram. 
 

 

Ysp(s) E(s) U(s)
GC(s) GP(s)

+
–

Y(s)

Controller Process

Measurement                                 
Sensor/Transmitter                

Y(s)YM(s)
GM(s)
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 Q-16.2 Draw and label the block diagram for this process. Please use the notation given. 

Fo(s)

Fd (s)Fi(s)

hsp(s)

hm(s)

Fc(s)
h(s)

 


