Control Systems

Nyquist stability criterion L. Lanari

DIPARTIMENTO DI INGEGNERIA INFORMATICA **AUTOMATICA E GESTIONALE ANTONIO RUBERTI**

Outline

- polar plots when $F(j\omega)$ has no poles on the imaginary axis
- Nyquist stability criterion
- what happens when $F(j\omega)$ has poles on the imaginary axis
- general feedback system
- stability margins (gain and phase margin)
- Bode stability criterion
- effect of a delay in a feedback loop

Lanari: CS - Stability - Nyquist 2

Unit negative feedback

closed-loop system

we have seen that

- in a unit feedback system, the **closed-loop** system has **hidden modes** if and only if the open-loop has them
- the open-loop hidden modes are inherited **unchanged** by the closed-loop

therefore we make the hypothesis that there exists

no open-loop hidden mode with non negative real part

(since this would be inherited by the closed-loop system)

stability of the closed-loop is only determined by the closed-loop poles

Lanari: CS - Stability - Nyquist 3

We are going to determine the

stability of the closed-loop system **from** the **open-loop system** features

(i.e. the graphical representation of the open-loop frequency response $F(j\omega)$)

```
Nyquist diagram: (closed) polar plot of F(j\omega) with \omega \in (-\infty, \infty)
```
we plot the magnitude and phase on the same plot using the frequency as a parameter, that is we use the polar form for the complex number $F(j\omega)$

being $F(s)$ a rational fraction

$$
F(\text{-}j\omega) \equiv F^*(j\omega)
$$

and therefore the plot for negative angular frequencies ω is the **symmetric** wrt the real axis of the one obtained for positive ω

Lanari: CS - Stability - Nyquist 4

some **polar plots**

Hyp. no open-loop poles on the imaginary axis (i.e. with $\text{Re}[.]=0$)

polar plot of $F(j\omega)$ can be obtained from the Bode diagrams (magnitude and phase information)

Lanari: CS - **Stability - Nyquist** 5

fact I

The closed-loop system $W(s)$ has poles with $\text{Re}[.]=0$ if anf only if the Nyquist plot of $F(j\omega)$ passes through the critical point (-1,0)

Proof.

Nyquist plot intersects the real axis in -1 therefore $\exists \bar{\omega}$ such that $F(j\bar{\omega}) = -1$

 ${\sf that\ is}\ \ F(j\bar\omega)+1=0\quad \ \text{ Being the closed-loop transfer function given by}$

$$
W(s) = \frac{F(s)}{1 + F(s)}
$$
 this shows that $s = j\bar{\omega}$ is a pole of $W(s)$

(and vice versa).

Lanari: CS - Stability - Nyquist

fact II Hyp. no open-loop poles on the imaginary axis (i.e. with $Re[.] = 0$)

let us define

- n_F ⁺ the number of open-loop poles with positive real part
- n_{W} ⁺ the number of closed-loop poles with positive real part
- N_{cc} the number of encirclements the Nyquist plot of $F(j\omega)$ makes around the point $(-1, 0)$ counted positive if counter-clockwise

a direct application of Cauchy's principle of argument gives

$$
N_{cc}=n_F^{+}\textit{-}n_W^{+}
$$

Obviously if the encirclements are defined positive clockwise, let them be N_c , the relationship changes sign and becomes $N_c=n_W^+$ - n_F^+

Lanari: CS - Stability - Nyquist 7

Hyp. no open-loop poles on the imaginary axis (i.e. with $\text{Re}[.]=0$)

(this hypothesis guarantees that, if $F(s)$ is strictly proper, the polar plot of $F(j\omega)$ is a closed contour and therefore we can determine the number of encirclements)

In order to guarantee closed-loop stability, we need $n_W^+ = 0$ (no closed-loop poles with positive real part) and no poles with null real part (which we saw being equivalent to asking that the Nyquist plot of $F(j\omega)$ does not go through the point $(-1, 0)$)

If the open-loop system has no poles on the imaginary axis, the unit negative feedback system is **asymptotically stable**

if and only if

i) the Nyquist plot does not pass through the point $(-1, 0)$

ii) the number of encirclements around the point $(-1, 0)$ counted positive if counter-

clockwise is equal to the number of open-loop poles with positive real part, i.e.

 $N_{cc} = n_F^+$

Nyquist stability criterion

Lanari: CS - Stability - Nyquist 8

Remarks

- if the open-loop system has no positive real part poles then we obtain the simple N&S condition $N_{cc} = 0$ which requires the Nyquist plot not to encircle $(-1, 0)$
- if the stability condition is not satisfied then we have an unstable closed-loop system with $n_{W}^+=n_F^+$ - N_{cc} positive real part poles
- condition i), which ensures that the closed-loop system does not have poles with null part, could be omitted by noting that if the Nyquist plot goes through the critical point $(-1, 0)$ then the number of encirclements is not well defined

examples on the number of encirclements depending on where is the critical point

Lanari: CS - Stability - Nyquist 9

Lanari: CS - Stability - Nyquist 12

Sunday, November 9, 2014

phase

Lanari: CS - Stability - Nyquist 13

Let's remove the hypothesis of no open-loop poles on the imaginary axis (i.e. with $\text{Re}[.]=0$)

open-loop poles on the imaginary axis (i.e. with $\text{Re}[.]=0$) come from:

- one or more integrators (pole in $s = 0$)
- resonance (imaginary poles in $s = +/- j\omega_n$)

and give a discontinuity in the phase

- passing from $\pi/2$ to - $\pi/2$ when ω switches from 0° to 0^+
- or from 0 to π when ω switches from ω_n to $\omega_n{}^+$

while the magnitude is at infinity

In order to obtain a closed polar plot, we introduce **closures at infinity** which consists in rotating of π clockwise with an infinite radius (for every pole with $\text{Re}[.]=0$) for growing frequencies, at those values of the frequency corresponding to singularities of the transfer function $F(s)$ lying on the imaginary axis (poles of the open-loop system with $Re[.] = 0$)

Lanari: CS - Stability - Nyquist 14

closures at infinity

 $F(s) = \frac{K}{(s_0 + s_1)^2}$ $(s^2 + \omega_1^2)(1 + \tau_1 s)$ $F(s) = \frac{K}{(s_1 - s_2)^2}$ $(s^2 + \omega_1^2)^2(1 + \tau_1 s)$ $F(s) = \frac{K(1+\tau_2s)}{2(2+\tau_2^2)(1+\tau_1^2)}$ $s^2(s^2 + \omega_1^2)(1 + \tau_1 s)$ π clockwise at infinity from $\omega=0^{\texttt{-}}$ to $\omega=0^+$ 2π clockwise at infinity from $\omega=0^{\scriptscriptstyle +}$ to $\omega=0^+$ 3π clockwise at infinity from $\omega=0^{\texttt{-}}$ to $\omega=0^+$ π clockwise at infinity from $\omega =$ - ω_1^+ to $\omega =$ - ω_1^+ π clockwise at infinity from $\omega = \omega_1^+$ to $\omega = \omega_1^+$ 2π clockwise at infinity from $\omega =$ - ω_1^+ to $\omega =$ - ω_1^+ 2π clockwise at infinity from $\omega=\omega_1^+$ to $\omega=\omega_1^+$ π clockwise at infinity from $\omega =$ - ω_1^+ to $\omega =$ - ω_1^+ π clockwise at infinity from $\omega = \omega_1^+$ to $\omega = \omega_1^+$ 2π clockwise at infinity from $\omega=0^{\scriptscriptstyle +}$ to $\omega=0^+$ $F(s) = \frac{K(1+\tau_2s)}{3(1+\tau_2s)}$ $s^3(1 + \tau_1 s)$ $F(s) = \frac{K}{2(1 + s)}$ $s^2(1 + \tau_1 s)$ $F(s) = \frac{K}{(1 + s)}$ $s(1+\tau_1 s)$

Lanari: CS - Stability - Nyquist 15

Lanari: CS - Stability - Nyquist 16

 π clockwise with infinite radius from -1 $^+$ to - 1^+ π clockwise with infinite radius from $1^\text{-}$ to $1^\text{+}$

Lanari: CS - Stability - Nyquist 17

general negative feedback

for stability these two
schemes are equivalent

 $F_2(s) = N_2(s)/D_2(s)$ $F_1(s) = N_1(s)/D_1(s)$

same denominator same poles same stability properties

Lanari: CS - Stability - Nyquist 21

Typical pattern for a control system:

open-loop system with no positive real part poles $n_F^+ = 0$, therefore the closed-loop system will be asymptotically stable if and only if the Nyquist plot makes no encirclements around the point $(-1, 0)$. We want to explore how the closed-loop stability varies as a gain K in the open-loop system increases.

As K increases over a critical value the closed-loop system goes from asymptotically stable to unstable

Lanari: CS - Stability - Nyquist 22

In this context, the proximity to the critical point $(-1, 0)$ is an indicator of the proximity of the closed-loop system to instability. We can define two quantities:

gain margin kGM

If we multiply $F(j\omega)$ by the quantity k_{GM} the Nyquist diagram will pass through the critical point

the gain margin k_{GM} is the smallest amount that the closed-loop system can tolerate (strictly) before it becomes unstable

$$
\omega_{\pi} \,:\; \angle F(j\omega_{\pi}) = -\pi
$$

$$
k_{\text{G}M} = \frac{1}{|F(j\omega_{\pi})|}
$$

$$
\frac{1}{|F(j\omega_{\pi})|}\qquad \qquad k_{\text{G}M}|_{dB} = -|F(j\omega_{\pi})|_{dB}
$$

only positive angular frequencies are shown

Lanari: CS - Stability - Nyquist 23

phase margin PM

the phase margin PM is the amount of lag the closed-loop system can tolerate (strictly) before it becomes unstable

 ω_c angular frequency at which the gain is unity is defined as **crossover frequency** (or gain crossover frequency)

 ω_c : $|F(j\omega_c)| = 1$

$$
\omega_c: \quad |F(j\omega_c)|_{dB} = 0 \, dB
$$

$$
PM = \pi + \angle F(j\omega_c)
$$

Lanari: CS - Stability - Nyquist 24

Lanari: CS - Stability - Nyquist 25

stability margins on Bode

$$
k_{GM}|_{dB} = -|F(j\omega_{\pi})|_{dB}
$$

$$
PM = \pi + \angle F(j\omega_c)
$$

$$
F(s) = \frac{1000}{s(s+10)^2}
$$

Lanari: CS - Stability - Nyquist 26

Lanari: CS - Stability - Nyquist 27

Bode stability theorem

Let the open-loop system $F(s)$ be with no positive real part poles (i.e. $n_F^+ = 0$) and such that there exists a unique crossover frequency ω_c (i.e. such that $|F(j\omega_c)| = 1$) then the closed-loop system is asymptotically stable if and only if

the system's generalized gain is positive

& the phase margin (PM) is positive

Bode stability theorem

- stability margins are useful to evaluate stability **robustness** wrt parameters variations (for example the gain margin directly states how much gain variation we can tolerate)
- phase margin is also useful to evaluate stability **robustness** wrt delays in the feedback loop. Recall that, from the time shifting property of the Laplace transform, a delay is modeled by e^{-sT} and that

$$
\begin{array}{c}\n+ \longrightarrow \\
\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\begin{array}{c}\n\hline\ne^{-sT} \\
\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\qquad\n\begin{array}{c}\n\hline\n\end{array}\n\end{array}
$$

$$
\angle e^{-j\omega T} = -\omega T \longrightarrow
$$

a delay introduces a phase lag and therefore it can easily "destabilize" a system (note that the abscissa in the Bode diagrams is in log_{10} scale so the phase decreases very fast)

$$
|e^{-j\omega T}| = 1 \qquad \longrightarrow
$$

[|]e−*j*ω*^T [|]* = 1 a delay in the loop does not alter the magnitude (0 dB contribution)

Lanari: CS - Stability - Nyquist 29

Special cases

• infinite gain margin

• infinite phase margin

Lanari: CS - Stability - Nyquist 30

Particular example

good gain and phase margins but close to critical point

Lanari: CS - Stability - Nyquist 31