
Last name	Name	student ID No.:
	PC No.	

Section 4: STABILITY OF LINEAR DYNAMIC SYSTEMS

A linear dynamic system is made of two processes in this way

with transfer functions
$$G_1(s) = \frac{\left(\frac{1}{16}\right)}{\frac{s}{p} + 0.95}$$
 $G_2(s) = \frac{1}{\frac{s}{1.95} + 1.05}$

where:

p is a parameter

- I. Determine the system $G_p(s)$ resulting from the parallel.
- II. Which order is $G_p(s)$?
- III. Assign a value to the parameter p such as the system $G_p(s)$ resulting from the parallel becomes an **inverse-response system**
- IV. How much is the **gain** for such as a system $G_p(s)$ resulting from the parallel?

Part A: Root locus

For the **system** $G_p(s)$, use Matlab and SisoTool resources, attach here their results and answer the following questions:

- 1. Plot the *root locus*
- 2. Discuss existence of asymptotes and, if possible, calculate the gravity center and angles formed with the real axis.
- 3. Calculate the limiting value/values for K_c

For the system $G_p(s)$, add a PD controller:

- 4. Plot the new *root locus*
- 5. Calculate the new limiting value/values for K_{cD}

6. Compare K_{cD} to K_c and discuss if the "stability space" is increased or not

For the **system** $G_p(s)$, add a PI controller:

- 7. Plot the new *root locus*
- 8. Calculate the new limiting value/values for K_{cI}
- 9. Compare K_{cl} to K_c and discuss if the "stability space" is increased or not

Part B: Frequency response

For the **dynamic system** $G_p(s)$ and a *P* controller with $K_c=1$:

- 1) Plot the asymptotic Bode Diagrams by means of the ASBODE script, and attach them here
- 2) Does a *crossover* frequency exist? How much is it?
- 3) Does a *gain crossover* frequency exist? How much is it?
- 4) Decide if the Bode stability criterion is applicable
- 5) If yes, is the above system closed-loop stable?

Part C: Dynamic responses in the time domain

Come back to the original system $G_p(s)$ resulting from the parallel:

- A. assign a new value to the parameter p such as $G_p(s)$ is NOT an **inverse-response system** anymore
- B. plot the **open-loop** dynamic response to a unit step, attach it here and give your comments
- C. assign a P controller with K_c=0.1 and plot the closed-loop dynamic response to a unit step change in *set point*, attach it here and give your comments

Part D: Inverse Response Compensator

a) write its TF