

Last name	Name	student ID No.:
	PC No.	

Section 4: STABILITY OF LINEAR DYNAMIC SYSTEMS

A linear dynamic system is made of two processes in this way

with transfer functions:

where:

n = N. matricola (student ID No.)

- I. Assign a value to the parameter p such as the system $G_{p}(s)$ resulting from the parallel is 2nd order
- II. Assign a new value to the parameter p such as the system $G_{P}(s)$ resulting from the parallel becomes an inverse-response system
- III. Convert such an **inverse-response system** $G_P(s)$ into the **canonical form**
- IV. How many and how much are the **time constants** in $G_{p}(s)$?
- V. How much is the **gain** for such as a system $G_P(s)$ resulting from the parallel?

Part A: Root locus

For the system G_p(s), use Matlab and SisoTool resources, attach here their results and answer the following questions:

A1.Plot the root locus by means of Matlab or SisoTool resources and attach it here

A2.Discuss existence of a breakaway point, if any, and calculate its position.

A3.Calculate the limiting value/values K*

A4.Calculate the value of closed loop poles just corresponding to K*

A5.Calculate the value of **closed loop poles** just corresponding a given gain $K_c = 10$

Part B: Frequency response

For the open loop TF GoL(s) given by **dynamic system** G_P(s) and an added *PI* **controller with K_c=1 and \tau_I = \sqrt{\frac{n-0.05}{n+0.05}} SeC:**

- B1)Plot the **Bode Diagrams** by means of Matlab resources, with a log scale of the magnitude (NOT in dB), and attach them here
- B2) Does a *crossover* frequency exist? How much is it?
- B3) Does a *gain crossover* frequency exist? How much is it?
- B4) Calculate the value of **AR** and ϕ just corresponding to a given $\omega = 0.5$ rad/s
- B5) Plot the **extended Nyquist diagram** *together with the unit circle and the Peak Response*, and attach it here
- B6) Is the Nyquist diagram crossing the critical point?
- B7) Check, on the base of the **Nyquist stability criterion**, if the above system is closed-loop stable
- B8) Propose a change in GoL(s) such as the **Nyquist diagram** is passing exactly through the **critical point**

Part C: Dynamic responses in the time domain

Come back to the original open loop TF GoL(s):

- C1) Plot the open loop response to a step input change, attach it here and give your comments
- C2) Plot the **closed loop response** to a **step** input change in **disturbance**, attach it here and give your comments

Part D: Inverse Response Compensator

===