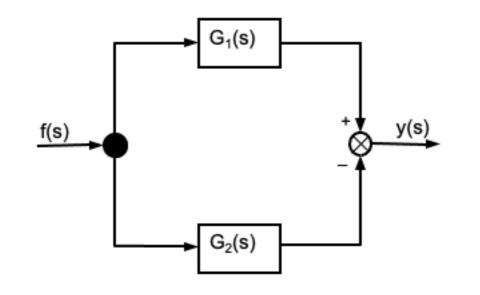
Last name	Name	student ID No.:

Section 4: STABILITY OF LINEAR DYNAMIC SYSTEMS

A linear dynamic system is made of two processes in this way



with transfer functions:

$$G_{1}(s) = \frac{a\left(\frac{n-0.05}{n+0.05}\right)}{\left[a\left(\frac{n+0.05}{n-0.05}\right)s\right]^{2} + \left[a\left(\frac{n+0.05}{n-0.05}\right)\right]s+1} \quad G_{2}(s) = \frac{\frac{n-0.05}{n+0.05}}{\left(\frac{n+0.05}{n-0.05}\right)s+1}$$

where:
$$\frac{n = N. \text{ matricola (student ID No.)}}{a \text{ is a parameter}}$$

- I. Which **order** is the system $G_p(s)$ resulting from the parallel?
- II. How much is the **type "g"** for such as a system $G_p(s)$ resulting from the parallel?
- III. Is $G_p(s)$ a BIBO stable system at **open-loop**?
- IV. Is G_p(s) a minimum phase system?
- V. Is there any damping factor? If there is, how much is ζ ?

Choose a value for "a" such as the system $G_P(s)$ resulting from the parallel is an inverse-response system

Part A: Root locus

A1.Plot the root locus by means of Matlab and SisoTool resources and attach it here

- A2.Calculate, if any, the breakaway points and discuss them
- A3.Calculate, if any, the limiting value/values K^{*} and discuss them

Part B: Frequency response

For the same **dynamic system** $G_p(s)$

and $\mathcal{K}c=\mathbf{1}$, answer the following questions:

- B1) Plot the Asymptotic Bode Diagrams by means of Matlab/SisoTool resources and attach them here
- B2)Discuss the low frequency and high frequency behaviors
- B3)Does a resonance frequency exist? How much is it?
- B4)Determine from the **Bode Diagrams** the limiting value K^{*} and compare it with the previous value found from the **root locus**
- B5)Calculate the value of TF $G_p(s)$ in **polar coordinates** (AR, ϕ) at a given $\omega = 5$ rad/s
- B6) Calculate the value of TF $G_p(s)$ in **cartesian coordinates** as a **complex number** (a + jb) at a given $\omega = 2$ rad/s

Part C: Dynamic responses in the time domain

For the same **dynamic system** $G_p(s)$, answer the following questions:

C1.Plot the **open-loop** dynamic response to **unit step** by means of Matlab/SisoTool resources, attach it here and give your comments

Choose a new value for "a" such as the new system $G_{new}(s)$ resulting from the parallel has a zero at origin

Part A bis: Root locus

A4.Plot the root locus by means of Matlab and SisoTool resources and attach it here

A5.Calculate, if any, the limiting value/values K^* and discuss them

Part B bis: Frequency response

For the new **dynamic system** $G_{new}(s)$ and $\mathcal{K}c=1$, answer the following questions:

- B7) Plot the **extended Nyquist diagram** together with **the unit circle and the Peak Response**, by means of Matlab and SisoTool resources, and attach it here
- B8)Check if the the extended Nyquist diagram is passing through the critical point
- B9)Check if the **Nyquist** stability criterion is applicable and, possibly, if the above system is closed-loop stable

Part C bis: Dynamic responses in the time domain

For the same **dynamic system** $G_{new}(s)$, answer the following questions:

C2.Plot the **open-loop** dynamic response to **unit step** by means of Matlab/SisoTool resources, attach it here and give your comments

Finally

C3. Compare and comment the two **open-loop** dynamic responses to **unit step** in plots obtained under C1) and C2) above

Part D: = = =