

PC No. ___________

Section 4: STABILITY OF LINEAR DYNAMIC SYSTEMS

A dynamic process has the following linear system transfer function (TF):

$$
G_p(s) = \frac{\frac{n - 0.05}{n + 0.05}}{(s + 1.25 \frac{n - 0.05}{n + 0.05})(s + 12.5 \frac{n - 0.05}{n + 0.05})(s + p)^2}
$$

where:

 $n = PC$ No. p is a parametric **pole**

- I. What is the **classification** you give to this type of TF?
- II. Is this an **inverse response** system?

Part A: *Root locus*

For the **dynamic system** G_p(s), by using as much as possible the Matlab or SisoTool resources, answer here the following questions.

Choose a real negative value for p

1. Plot the *root locus* by means of Matlab or SisoTool resources and attach it here

Choose a null value for p

2. Plot the *root locus* by means of Matlab or SisoTool resources and attach it here

Choose a real positive value for p

3. Plot the *root locus* by means of Matlab or SisoTool resources and attach it here

Part B: Frequency response

For the **dynamic system** G_p(s), by using as much as possible the Matlab or SisoTool resources, answer here the following questions:

Choose a real negative value for p

- 1) Plot the **extended Nyquist Diagram** *together with the unit circle and the Peak Response*, attach it here and comment it
- 2) Check, on the base of the **Nyquist** stability criterion, if the above system is closed-loop stable

Choose a null value for p

- 3) Plot the **extended Nyquist Diagram** *together with the unit circle and the Peak Response*, attach it here and comment it
- 4) Check, on the base of the **Nyquist** stability criterion, if the above system is closed-loop stable

Choose a real positive value for p

- 5) Plot the **extended Nyquist Diagram** *together with the unit circle and the Peak Response*, attach it here and comment it
- 6) Check, on the base of the **Nyquist** stability criterion, if the above system is closed-loop stable

Consider the 3 different choices made for the parametric **pole** and discuss:

- 7) which is the resulting $G_p(s)$ that is more prone to closed loop instability
- 8) Explain why

Part C: Dynamic responses in the time domain

For the **dynamic system** $G_p(s)$ that allows for closed loop stability as much as possible:

- a) Plot the **open loop response** to a unit step **input** change**,** attach it here and give your comments
- b) Plot the **closed loop response** yd(t) to a unit step **input** change in **disturbance,** attach it here and give your comments
- c) Calculate the value of the **closed loop response** yd(t) at a time just equal to twice the smallest time constant in $G_p(s)$

 $=$ $=$ $=$