Last nar	ne
----------	----

student ID No.:

Section 4: STABILITY OF LINEAR DYNAMIC SYSTEMS

Name

A dynamic process $G_p(s)$ is here considered that is a "recirculative process"¹:

Where U(s) is the **manipulated variable**: $G_1(s) = \frac{-1.5}{0.5 \ s + 1}$ and

 $G_2(s) = \frac{1}{2s - 1}$

and their combination with the block algebra introduces a **positive zero**.

I. What is the **process transfer function** $G_P(s)$?

In order to put the dynamic process $G_p(s)$ in a feedback control configuration, a unity gain element represents the measuring device and a proportional-integral controller is used:

$$G_C(s) = K_c \left(1 + \frac{1}{\tau_I s} \right)$$

where $\tau_I = 1$.

II. What is the **open loop transfer function Gol(s)**?

D.Caccavo, M.Miccio

¹ Koichi. Iinoya and Roger J. Altpeter, Industrial & Engineering Chemistry 1962 54 (7), 39-43

Part A: Root locus

- A1.Plot the *root locus* by means of MATLAB or SisoTool and attach it here.
- A2. Which rules are applied to build the root-locus, direct or the inverse root locus?
- A3. If any, find the Kc=Kc* of the controller for which the system in closed-loop is marginally stable.

A design requirement is available for this process, the percentage of overshoot must be lower than 10%.

- A4.Find Kc=Kcdesign of the PI controller for which the system respects the design requirement.
- A5. Report here a screenshot of the *root locus (from Sisotool)* for the previous defined value showing the placement of the closed-loop poles (*Hints: it may be useful to look also at question C1 at this point*).

Part B: Frequency response

Considering the previously found **open loop transfer function** $G_{OL}(s)$ and with Kc=1 in the PI controller:

- B1)Plot the **Bode Diagrams** by means of MATLAB or SisoTool resources and attach it here
- B2)Does a **crossover** frequency exist? How much is it?
- B3)Decide if the Bode stability criterion is applicable.
- B4)If yes, is the above system closed-loop stable?
- B5)Plot and attach here the **extended Nyquist diagram** *together with the unit circle* by means of MATLAB or SisoTool resources, then discuss it in detail.

B6)Check, on the base of the Nyquist stability criterion, if the above system is closed-loop stable

Inverse Response Compensator

I. Find a rational transfer function $G_0(s)$ such as that $G_P(s) = G_0(s)(1 - \eta s)$ where $(1 - \eta s)$ represents the position of the positive zero of the original $G_P(s)$

According to "Iinoya and Roger", an **inverse response compensator** can be built using the following feedback architecture:

where λ is an optimizable parameter, that can be set to $\lambda = 2\eta$ for optimal results².

- II. How much is the value of λ ?
- III. Write the new transfer function of the **compensated controller** G_c'(s), using for G_c(s) (PI controller) the value of Kc=Kc* previously found.

Part C: Dynamic responses in the time domain

Considering the feedback control system with the controller block given by the <u>uncompensated PI</u> <u>controller</u> $G_c(s)$, with the gain Kcdesign previously determined

C1.Plot the **closed-loop** system dynamic response to a unit step in **set point** by means of MATLAB or SisoTool resources with the <u>rise time and peak response</u> and attach it here.

Considering the feedback control system with the controller block given by the <u>compensated</u> <u>controller</u> $G_c'(s)$, with the gain Kc=Kc* previously determined

- C2. Plot the **closed-loop** system dynamic response to a unit step in **set point** by means of MATLAB or SisoTool resources with the <u>rise time and peak response</u> and attach it here.
- C3. Does the inverse response compensator improve the closed-loop stability of the system? Why?
- C4. Does the inverse response compensator maintain or remove an inverse response pattern in the time domain?

² Ray, W. H., Ogunnaike, B. A. (1994). Process Dynamics, Modeling, and Control: Oxford University Press.

Part D:

= = =