Problema del 2.07.02

Devi dimensionare una valvola per le seguenti condizioni:

fluido: acqua

portata nominale: $\dot{V} = 290.6 \text{ l s}^{-1}$

diametro nominale della linea: DN = 8"

pressione a monte della valvola: P_1 = 2.509 atm pressione a valle della valvola: P_2 = 1.995 atm

tensione di vapore: $P_v = 3.7$ psi

coefficiente del rapporto della pressione critica per i liquidi: $F_F = 0.956$

1. Calcola il coefficiente di efflusso C_v della valvola.

In questa sede é proposta una valvola a sfera modulante del tipo Pratt con la seguente tabella dei

C_{vn}:

Valve Size, in	C _{vn} gpm psi ^{-1/2}
6	5250
8	9330
10	14600
12	21000

Apertura della	φ, %
valvola in gradi, °	·
10	0.88
20	1.8
30	3.1
40	4.7
50	7.2
60	11.2
70	18.0
80	41.5
90	100

- 2. Scegliere la valvola con il DN più opportuno.
- 3. Che tipo di caratteristica intrinseca ha la valvola in analisi?
- 4. Che differenza presenta la caratteristica di una valvola a sfera, come questa in questione, rispetto a quella classica della valvola a globo?
- 5. Suggerisci quale potrebbe essere la rangeability per la valvola scelta.
- 6. Calcolare i punti salienti della caratteristica di efflusso e stabilire se la valvola a sfera opera in regime di flusso normale.
- 7. Si vogliono prendere in considerazione varie condizioni di lavoro per l'acqua, a diverse temperature e quindi a diverse tensioni di vapore P_v, come riportato in tabella:

۶	psia
40	0.12
50	0.18
100	0.95
150	3.7
175	6.7
190	9.3
200	11.5

Valutare, per le condizioni di temperatura riportate in tabella, l'eventuale passaggio della valvola dal flusso normale al flusso semicritico: $(P_1-P_2) > \Delta P_c$.

8. Valutare la temperatura massima a cui la valvola può operare in condizioni di flusso normale.

file valvola_020702.mcd pag. 1

Insegnamento di DINAMICA E CONTROLLO DEI PROCESSI CHIMICI

Introduction

The pink painted variables are DATA

The blu painted text is COMMENT

PROBLEM DATA

fluid: WATER

$$\rho := 1000 \cdot kg \cdot m^{-3} \quad \text{density}$$

$$G_{\mathbf{f}} \coloneqq 1$$
 specific density

$$P_1 := 2.509 \cdot atm \quad upstream absolute pressure$$
 $P_1 = 36.872 \, psi$

$$P_2 := 1.995 \cdot atm \quad downstream pressure$$

$$P_2 = 29.318 \, psi$$

$$\Delta P := P_1 - P_2 \qquad \Delta P = 7.554 \, \text{psi}$$

$$V_{punto} := 290.6 L \cdot s^{-1}$$
 $V_{punto} = 4.606 \times 10^3 \frac{gal}{min}$ volume flow rate

$$P_V := 3.7 \cdot psi$$
 $P_V = 2.551 \times 10^4 Pa$

$$F_F := 0.956$$

OTHER DATA

F_I := 0.55 Ball Valve - vedi la norma "ISA 75.01 - Annex D"

$$K_c := 0.7F_L^2$$
 $K_c = 0.212$ vedi Magnani pag. 26

DESIGN CALCULATIONS

$$C_{V} := \frac{V_punto}{\sqrt{\frac{P_1 - P_2}{G_f}}} \qquad \qquad C_{V} = 1.676 \times 10^3 \, \text{gal min}^{-1} \cdot \text{psi}^{-0.5} \qquad \qquad \text{Valve Flow Coefficient}$$

Essendo una VALV. ROTATIVA, decidiamo di scegliere $\phi_{0.7}$ in corrispondenza dell'angolo di apertura di 70°.

Quindi:

$$\phi_{0.7} := 0.18$$

Per D valvola = 6"

risulta: $Cv^* = \phi(0.7)Cvn < Cv$, tale scelta non é consigliabile

Per D_valvola = 8"

Università degli Studi di Salerno

Insegnamento di DINAMICA E CONTROLLO DEI PROCESSI CHIMICI

Docente prof. Michele Miccio

 $\begin{aligned} \text{Cvn} &:= 9330 \text{gal min}^{-1} \cdot \text{psi}^{-0.5} \\ \text{risulta: Cv*} &= \phi(0.7) \text{Cvn} > \text{Cv}, \text{ dunque si sceglie questo diametro.} \end{aligned}$

Insegnamento di DINAMICA E CONTROLLO DEI PROCESSI CHIMICI

3. La Caratteristica risulta equipercentuale

Valutazione della rangeability

Dalla scelta della valvola da tabella: $c_{vMax} := 9330$

Per un'apertura di 10° risulta: $c_{vMin} := c_{vMax} \cdot 0.0088 \quad c_{vMin} = 82.104$

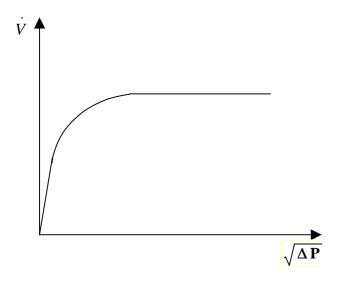
Dunque risulta: $r := \frac{c_v Max}{c_v Min} \qquad \qquad r = 113.636$

Caratteristica di efflusso

Per valutare la *caratteristica di efflusso* si determinano le seguenti grandezze:

$$\begin{split} \Delta P_{c} &:= K_{c} \Big(P_{1} - P_{v} \Big) & V_{-}punto_{c} := Cv \sqrt{\frac{\Delta P_{c}}{G_{f}}} \\ \sqrt{\Delta P_{c}} &= 2.65 \sqrt{psi} & V_{-}punto_{c} = 4.442 \times 10^{3} \frac{gal}{min} \\ \Delta P_{max} &:= F_{L}^{2} \Big(P_{1} - F_{F} \cdot P_{v} \Big) & V_{-}punto_{max} := Cv \sqrt{\frac{\Delta P_{max}}{G_{f}}} \\ \sqrt{\Delta P_{max}} &= 3.176 \sqrt{psi} & V_{-}punto_{max} = 5.322 \times 10^{3} \frac{gal}{min} \end{split}$$

$$\Delta P_f := P_1 - P_V$$


$$\sqrt{\Delta P_f} = 5.76\sqrt{psi}$$

Insegnamento di DINAMICA E CONTROLLO DEI PROCESSI CHIMICI

Condizioni di flusso normale

$$\rightarrow$$
 $(\Delta P - \Delta P_c) < 0$

$$\Delta P - \Delta P_C = 0.53 \, \text{psi}$$

Valutazione della temperatura massima a cui la valvola può operare in condizioni di flusso normale

$$P_{V} := \begin{pmatrix} 0.12 \cdot psi \\ 0.18 \cdot psi \\ 0.95 \cdot psi \\ 3.7 \cdot psi \\ 6.7 \cdot psi \end{pmatrix}$$

$$\Delta P_c := K_c (P_1 - P_v)$$

$$\Delta P_{c} = \begin{pmatrix} 7.782 \\ 7.77 \\ 7.607 \\ 7.024 \\ 6.389 \end{pmatrix} \text{psi}$$

Condizione di flusso normale: $\Delta P - \Delta P_{C} < \, 0$

$$\Delta P - \Delta P_{c} = \begin{pmatrix} -0.229 \\ -0.216 \\ -0.053 \\ 0.53 \\ 1.165 \end{pmatrix} \text{psi}$$

Quindi per temperature dell'acqua maggiori di 100°F la valvola passa ad una condizione di flusso semi-critico